
- •8.3. Биология
- •3.Создание первой естественно-научной картины мира в древнегреческой культуре.
- •3.5. Формирование первых естественнонаучных программ
- •3.9. Античные воззрения на органический мир
- •3.10. Упадок античной науки
- •5. Познание природы в эпоху возрождения
- •5.1. Мировоззренческая революция Возрождения
- •5.2. Зарождение научной биологии
- •5.3. Коперниканская революция
- •6.1. И. Кеплер: от поисков гармонии мира к открытию тайны планетных орбит
- •6.2. Формирование непосредственных предпосылок классической механики — первой фундаментальной естественнонаучной теории
- •6.2.1. Г. Галилей: разработка-понятий и принципов “земной динамики"
- •6.3. Ньютонианская революция
- •6.4. Изучение магнитных и электрических явлений
- •7. Естествознание XVIII - первой половины хiх в.
- •7.4. Биология
- •8. Естествознание второй половины хiXв.: на пути к научной революции.
- •8.3. Биология
- •12. Особенности биологии XX в.
- •12.1. Век генетики
- •15. Теория самоорганизации (синергетика)
- •15.1. От моделирования простых систем к моделированию сложных
- •15.2. Характеристики самоорганизующихся систем
- •15.3. Закономерности самоорганизации
- •16. Глобальный эволюционизм
6.2. Формирование непосредственных предпосылок классической механики — первой фундаментальной естественнонаучной теории
6.2.1. Г. Галилей: разработка-понятий и принципов “земной динамики"
В формировании классической механики и утверждении нового Mировоззрения велика заслуга Г. Галилея. Год рождения Галилея — это год смерти Микеланджело и год рождения Шекспира. Галилей — вы-
161
дающаяся личность переходной эпохи от Возрождения к Новому времени. С прошлым его сближает еще многое: неопределенная трактовка проблемы бесконечности мира; он не принимает Кеплеровых эллиптических орбит' и ускорений планет; у него нет еще представления о том, что тела движутся в “плоском” однородном пространстве благодаря их взаимодействиям; он еще не освободился от чувственных образов и качественных противопоставлений и др. Но в то же время он весь устремлен в будущее — он открывает дорогу математическому естествознанию. Он был уверен, что “законы природы написаны на языке математики”; его стихия — мысленные кинематические и динамические эксперименты, логические конструкции; главный пафос его творчества — возможность математического постижения мира; смысл своего творчества он видит в физическом обосновании гелиоцентризма, учения Коперника. Галилей закладывает основы экспериментального естествознания: показывает, что естествознание требует умения делать научные обобщения из опыта, . а эксперимент — важнейший метод научного познания.
Еще будучи студентом (университета г. Пиза), Галилей делает открытие большой научной и практической значимости — открывает закон изотропности колебаний маятника, который сразу же нашел применение в медицине, астрономии, географии, прикладной механике. После изобретения зрительной трубы (1608) он усовершенствовал ее и превратил в телескоп с 30-кратным приближением, с помощью которого совершил ряд выдающихся астрономических открытий: спутников Юпитера, Сатурна, фаз Венеры, солнечных пятен, обнаружение того, что Млечный Путь представляет собой скопление бесконечного множества звезд, и др.
За признание своих открытий Галилею пришлось вести борьбу с церковной ортодоксией. Ведь его деятельность происходила в атмосфере Контрреформации, усиления католической реакции. Это был трагический для естествознания период истории. Речь шла о суверенитете разума в поисках истины. В 1616 г. учение Коперника было запрещено, а его книга внесена в инквизиционный “Индекс запрещенных книг”. После выхода в свет декрета начались сумерки итальянской науки, в научных кругах воцарилось мрачное безмолвие.
Церковь дважды вела процессы против Галилея. После первого процесса в 1616г. Галилей был вынужден перейти к методам “неле-
__________________________________
' Галилей считал их простым воскрешением древней пифагорейской идеи о роли числа во Вселенной, несовместимой с новым экспериментальным естество-манием, за которое он боролся. Поэтому он не обратил внимания и на Кеплеровы законы (возможно, он и не ознакомился с ними, хотя Кеплер послал ему свое сочинение 1609 г.).
162
гальной борьбы” за коперниканизм. Но он продолжал исследование законов движения тел под действием сил в земных условиях. Основные итоги этих исследований он изложил в книге “Диалог о двух системах мира”, которая была опубликована во Флоренции в 1632 г.
Книга Галилея вызвала восторг в научных кругах всех стран и бурю негодования среди церковников. Иезуиты немедленно начали кампанию против Галилея, которая привела ко второму процессу инквизиции в 1633 г. Инквизиция пригрозила Галилею не только осудить его как еретика, но и уничтожить все его рукописи и книги. От него требовали признания ложности учения Коперника. Галилей вынужден был уступить. Ценой тягчайшей моральной пытки, невероятных унижений перед теми, кого он так страстно бичевал в своих произведениях, Галилей купил возможность завершения своего дела.
Существует легенда, что 22 июня 1633 г. в церкви Святой Марии после прочтения текста формального отречения Галилей произнес фразу “Eppur si muove!” (И все-таки она движется!). Эта легенда вдохновила многих художников, писателей, поэтов. На самом деле эта фраза не была произнесена ни в этот день, ни позже. Но тем не менее эта непроизнесенная фраза выражает действительный смысл жизни и творчества Галилея после приговора. В годы, последовавшие за процессом, Галилей продолжал разработку рациональной динамики.
Историческая заслуга Галилея перед естествознанием состоит в следующем:
• он разграничил понятия равномерного и неравномерного, ускоренного движения;
• сформулировал понятие ускорения (скорость изменения скорости);
• показал, что результатом действия силы на движущееся тело является не скорость, а ускорение;
• вывел формулу, связывающую ускорение, путь и время:
S= 1/2 gt2;
• сформулировал принцип инерции (“если на тело не действует сила, то тело находится либо в состоянии покоя, либо в состоянии прямолинейного равномерного движения”);
• выработал понятие инерциальной системы;
• сформулировал принцип относительности движения (все системы, которые движутся прямолинейно и равномерно лру1' относительно друга (т.е. инерциальные системы) равноправны между собой в отношении описания механических процессов);
• открыл закон независимости действия сил (принцип суперпозиции).
162
На основании этих законов появилась возможность решения простейших динамических задач. Так, например, X. Гюйгенс получил решения задач об ударе упругих шаров, о колебаниях физического маятника, нашел выражение для определения центробежной силы.
Исследования Галилея заложили надежный фундамент динамики, а также методологии классического естествознания. Дальнейшие исследования лишь углубляли и укрепляли этот фундамент. С полным основанием Галилея называют “отцом современного естествознания”.
6.2.2. Картезианская физика
Огромное влияние на развитие теоретической мысли в физике XVII в. оказал великий французский мыслитель и ученый Рене Декарт (Картезий). Критически пересмотрев старую схоластическую философию, он разработал рационалистическую методологию теоретического естествознания. (“Оставим книги, посоветуемся с разумом! ” — говорил Декарт.) Революционное значение для развития естествознания имело его знаменитое “Рассуждение о методе” (1637), где провозглашены новые принципы научного мышления и новые средства математического анализа в геометрии и оптике.
Требование простоты и ясности — основной принцип методологии Декарта. Поэтому в научной системе Декарта первостепенную роль играют простота и очевидность математических аксиом и принципов. Выводы из аксиом (простых, очевидных положений) получаются логическим путем, путем математических рассуждений. В проверке результатов важную роль играет опыт.
Рационалистическая методология вполне естественно приводит Декарта к аналитической геометрии и геометризации физики. Отвлеченные числовые соотношения проще и абстрактнее геометрических; отсюда вытекает задача сведения геометрических характеристик (положение точки в пространстве, расстояние между точками и др.) к числовым отношениям. Решая эту задачу, Декарт создает аналитическую геометрию.
Декарт закладывает основы механистического мировоззрения, Центральная идея которого — идея тождества материальности и протяженности. Мир Декарта — это однородное пространство, или, что то же самое, протяженная материя. “...Мир, или протяженная материя, составляющая универсум, не имеет никаких границ”'. Все изменения, которые наблюдаются в этом пространстве, сводятся к един-
_______________________________
' Декарт Р. Первоначала философии // Соч.: В 2 т. М., 1989. Т. 1. С. 359.
163
ственному простейшему изменению — механическому перемещению тел. “Дайте мне материю и движение, и я построю мир” — таков лейтмотив, идейное знамя картезианской физики.
Декарт — основоположник научной космогонии. Он автор первой новоевропейской теории происхождения мира. Вселенной. Хотя мир создан Богом, Бог не принимает участия в его дальнейшем развитии. Мир развивается по естественным законам. Законы природы достаточны для того, чтобы понять не только совершающиеся в природе явления, но и ее эволюцию. Декарт допускает, что природа была создана Богом в виде первоначального хаоса ее частей и их движений. По Декарту, однородная материя дробима на части, имеющие различные формы и размеры. В процессе дробления и взаимодействия формируются три группы элементов материи — легкие и разнообразной формы (огонь); отшлифованные частицы круглой формы (воздух); крупные, медленно движущиеся частицы (земля). Все эти частицы вначале двигались хаотически и были хаотически перемешаны. Однако, по мнению Декарта, законы природы таковы, что они достаточны, чтобы заставить части материи расположиться в весьма стройном порядке. Благодаря этим законам материя принимает форму нашего “весьма совершенного мира”. Среди этих законов природы — принцип инерции' и закон сохранения количества движения. Из первоначального хаоса благодаря взаимодействиям частиц образовались вихри, каждый из которых имеет свой центр. Непрерывное трение частиц друг о друга шлифует их и дробит. Отшлифованные круглые частицы, находясь в непрерывном круговом движении, образуют материю “неба”, раздробленные части выпираются к центру, образуя материю “огня”. Этот огонь из тонких частиц, находящихся в бурном движении, формирует звезды и Солнце. Более массивные частицы вытесняются к периферии, сцепливаются и образуют тела планет. Каждая планета вовлекается своим вихрем в круговое движение около центрального светила.
Космогоническая теория Декарта объясняла суточное движение Земли вокруг своей оси и ее годовое движение вокруг Солнца. Но объяснить не могла других особенностей Солнечной системы, в том числе законов Кеплера. Это была умозрительная космогония, натурфилософская схема, не обоснованная математически. И тем не менее ей присуще великое достоинство — идея развития, поразительно смелая для той эпохи.
__________________________________
' Декарт следующим образом формулирует принцип инерции: “...Каждая частица материи в отдельности продолжает находиться в одном и том же состоянии до тех пор, пока столкновение г другими частицами не вынуждает ее изменить это состояние” (Декарт Р. Мир, или Трактат о свете // Соч.: В 2 т. Т. 1. С. 200).
164
Эволюционная картина мира быстро распространялась в науке. Величием открывавшихся горизонтов учение Декарта захватило лучшие умы и надолго определило дальнейшее развитие физики и всего естествознания. Большая часть XVIII в. в истории естествознания прошла под знаком борьбы картезианства и ньютонианства. Несмотря на то что Ньютоново направление на том этане развития науки было более прогрессивным, общие идеи Декарта продолжали оказывать серьезное влияние на формирование научных взглядов XVIII в. ц даже XIX в., а разработанная им идея космического вихревого движения не раз возрождалась в астрономии и космогонии вплоть до XX в.
Великий Ньютон имел все основания заявить: “Если я вижу дальше Декарта, то это потому, что я стою на плечах гиганта”.
6.2.3. Новые идеи в динамике Солнечной системы
Ученые XVII в. внесли свой вклад в развитие предпосылок классической механики. Весьма значительной была роль парижского астронома Ж.Б. Буйо, который высказал в своей книге (1645) мысль о том, что поскольку сила, распространяемая вращающимся Солнцем, о которой писал И. Кеплер, действует не только в плоскости вращения планет, а от всей поверхности Солнца ко всей поверхности планеты, то она, следовательно, убывает обратно пропорционально квадрату расстояния от Солнца. Ньютон был знаком с этой книгой и упоминает ее автора в качестве одного из своих предшественников.
Важную роль в становлении классической механики сыграло творчество итальянского астронома Дж. Борелли, которого Ньютон также числит в ряду своих предшественников. Разрабатывая теорию спутников Юпитера, Борелли в 1666 г. выдвинул идею о том, что если некоторая сила притягивает спутники к планете, а планеты — к Солнцу, то эта сила должна быть уравновешена противоположно направленной центробежной силой, возникающей при круговом движении. Таким образом он объясняет эллиптическое движение планет вокруг Солнца. У Борелли, в сущности, уже содержатся основные Моменты понимания динамики Солнечной системы, по пока без ее математического описания.
1666 г. был весьма урожайным на идеи в области теории тяготения. В этом году Р. Гук на заседаниях Лондонского королевского общества дважды выступал с докладами о природе тяжести и пришел к выводу, что криволинейность планетных орбит порождена некоторой постоянно действующей силой. В этом же году у И. Ньютона возникает идея всемирного тяготения и идея о том, как можно вычислить силу тяготения.
165