
- •Теория информационных процессов и систем Теоретические материалы для самостоятельной работы
- •Кафедра "Информационные технологии"
- •Содержание
- •Основные задачи теории информационных систем
- •1.1. Макропроектирование и микропроектирование
- •1.2. Объект и субъект.
- •2. Основные понятия и свойства системы
- •2.1. Определение системы
- •2.2. Связь объекта с внешней средой
- •2.2.1. Внешняя среда.
- •2.2.2. Кибернетическая модель объекта.
- •2.2.3. Классификация входов и выходов объекта.
- •2.2.4. Выделение системы.
- •2.3. Основные понятия строения и функционирования информационных систем
- •2.3.1. Свойство.
- •2.3.2. Элемент.
- •3. Виды информационных систем
- •3.1 Классификация информационных систем
- •Технические, экономические, социальные, биологические и др. Системы.
- •Детерминированные и стохастические системы
- •Открытые и закрытые системы
- •3.2. Классификация систем по сложности
- •Сложность системы.
- •Взаимосвязь и взаимодействие между элементами в бс.
- •Закономерности систем
- •4.1. Закономерности взаимодействия части и целого
- •4.1.1. Целостность (эмерджентность)
- •4.1.2. Аддитивность
- •Прогрессирующая изоляция и прогрессирующая систематизация
- •4.1.2. Закономерности иерархической упорядоченности систем Интегративность
- •Коммуникативность
- •Эквифинальность
- •Закон необходимого разнообразия
- •Закономерность осуществимости и потенциальной эффективности систем
- •Закономерность целеобразования
- •Системный подход и системный анализ
- •5. Принципы построения иерархических информационных систем.
- •5.1. Виды и формы представления структур
- •5.2. Формализация иерархических понятий
- •5.2.1.Координация
- •5.2.2. Декомпозиция
- •5.2.3.Агрегация
- •6. Методы и модели описания информационных систем
- •6.1. Качественные методы описания систем
- •6.1.1. Эвристические методы решения творческих задач
- •6.1. Организация мозгового штурма
- •6.2. Критерии оценки идей
- •6.1.2.Методы типа сценариев.
- •6.1.3. Метод «дерева целей»
- •6.3. Дерево целей
- •6.1.4. Методы экспертных оценок.
- •6.1.5. Мажоритарная система выбора
- •А) Различные правила голосования
- •Б) Парадоксы голосования
- •6.1.6. Морфологические методы
- •6.2. Количественные методы описания систем.
- •6.3. Человеко – машиннные системы
- •6.3.1. Экспертные системы
- •6.3.2. Системы поддежки принятия решенй (сппр)
- •Основные виды сппр
- •7. Моделирование систем
- •7.1. Определение, структура, характеристики моделей
- •7.2. Соответствие между моделью и действительностью:
- •7.3. Классификация моделей по их назначению
- •7.4. Основные принципы моделирования
- •7.5. Классификация видов моделирования систем
- •8. Кибернетический подход к описанию ис.
- •8.1 Управление как процесс.
- •Штриховой линией выделена система управления (су), выполняющая функцию реализации целей управления z*, формируемых субъектом.
- •8.2 Системы управления (су) и сложный объект управления.
- •9. Динамическое описание ис
- •9.1. Модели ис в терминах «вход-выход»
- •9.2 Операторы переходов и выходов детерминированной ис без последствий
- •9.3 Детерминированные ис без последствий с входными сигналами двух классов.
- •9.4. Детерминированные ис с последствиями.
- •Стохастические системы.
- •Сигналы в системах (в разработке)
- •11. Информационные аспекты изучения систем
- •11.1. Энтропия, как мера степени неопределенности состояния физической системы
- •Энтропия сложной системы
- •Энтропия и информация
- •. Задача кодирования сообщений. Код Шеннона-Фено
- •Пропускная способность канала без помех.
- •. Пропускная способность канала с помехами.
- •Литература
Технические, экономические, социальные, биологические и др. Системы.
Техническая система – это совокупность взаимосвязанных физических элементов. В качестве связей в таких системах выступают физические взаимодействия (механические, электромагнитные и др.).
Примеры. Автомобиль, компьютер.
Экономическая система – это совокупность экономических отношений, возникающих в процессе производства, распределения и потребления экономических продуктов и регламентируемых совокупностью соответствующих правил и законодательных норм.
Система управления. Управление рассматривается как действия или функция, обеспечивающая реализацию заданных целей.
Система управления содержит два главных элемента управляемую подсистему (объект управления) и управляющую подсистему (осуществляющую функцию управления).
Применительно к техническим системам управляющую систему называют системой регулирования, а к социально-экономическим - системой организационного управления.
Эргатическая система - это система составным элементом является человек- оператор.
Частным случаем эргатической системы являются человеко-машинные системы - системы, в которых человек-оператор или группа операторов взаимодействует с техническим устройством в процессе производства материальных ценностей, управления, обработки информации.
Участие человека в системе управления требует, чтобы управление учитывало:
социальные, психологические, моральные и физиологические факторы, которые не поддаются формализации и могут быть учтены в системах управления только человеком;
необходимость в ряде случаев принимать решение на основе неполной информации, учитывать неформализуемые факторы - все это должен делать человек с большим опытом, хорошо понимающий задачи, стоящие перед системой;
могут быть системы, в которых нет отношений подчиненности, а существуют лишь отношения взаимодействия (межгосударственные отношения, отношения предприятий «по горизонтали»).
Организационная система - это совокупность элементов, обеспечивающих координацию действий, нормальное функционирование и развитие основных функциональных элементов объекта. Элементы такой системы представляют собой органы управления, обладающие правом принимать управленческие решения (руководители, организации и т.д.).
Социальная система – это совокупность мероприятий, направленных на социальное развитие жизни людей. К таким мероприятиям относятся: улучшение социально-экономических и производственных условий труда, улучшение жизни работников, улучшение жилищных условий и т.п.
Биологические системы. Живые системы поддерживают свою жизнедеятельность благодаря заложенным в них механизмам управления.
Детерминированные и стохастические системы
Если внешние воздействия, приложенные к системе (управляющие и возмущающие) являются определенными известными функциями времени u=f(t). В этом случае состоянии системы описываемой обыкновенными дифференциальными уравнениями, в любой момент времени t может быть однозначно описано по состоянию системы в предшествующий момент времени. Системы, для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого момента времени называются детерминированными.
Стохастические системы - системы, изменения в которых носят случайный характер. Например, воздействие на энергосистему различных пользователей. При случайных воздействиях, данных о состоянии системы недостаточно для предсказания в последующий момент времени.
Случайные воздействия могут прикладываться к системе из вне, или возникать внутри некоторых элементов (внутренние шумы). Исследование систем при наличии случайных воздействий можно проводить обычными методами, минимизировав шаг моделирования, чтобы не пропустить влияния случайных параметров. При этом, так как максимальное значение случайной величины встречается редко (в основном в технике преобладает нормальное распределение), то выбор минимального шага в большинстве моментов времени не будет обоснован.
В подавляющем большинстве случаев при проектировании систем закладываются не максимальным, а наиболее вероятным значением случайного параметра. В этом случае поучается более рациональная система, заранее предполагая ухудшение работы системы в отдельные промежутки времени. Например установка катодной защиты.
Расчет систем при случайных воздействиях производится с помощью специальных статистических методов. Вводятся оценки случайных параметров, выполненные на основании множества испытаний. Например карта поверхности уровня грунтовых вод СПб.
Статистические свойства случайной величины определяют по ее функции распределения или плотности вероятности.