
- •Теория информационных процессов и систем Теоретические материалы для самостоятельной работы
- •Кафедра "Информационные технологии"
- •Содержание
- •Основные задачи теории информационных систем
- •1.1. Макропроектирование и микропроектирование
- •1.2. Объект и субъект.
- •2. Основные понятия и свойства системы
- •2.1. Определение системы
- •2.2. Связь объекта с внешней средой
- •2.2.1. Внешняя среда.
- •2.2.2. Кибернетическая модель объекта.
- •2.2.3. Классификация входов и выходов объекта.
- •2.2.4. Выделение системы.
- •2.3. Основные понятия строения и функционирования информационных систем
- •2.3.1. Свойство.
- •2.3.2. Элемент.
- •3. Виды информационных систем
- •3.1 Классификация информационных систем
- •Технические, экономические, социальные, биологические и др. Системы.
- •Детерминированные и стохастические системы
- •Открытые и закрытые системы
- •3.2. Классификация систем по сложности
- •Сложность системы.
- •Взаимосвязь и взаимодействие между элементами в бс.
- •Закономерности систем
- •4.1. Закономерности взаимодействия части и целого
- •4.1.1. Целостность (эмерджентность)
- •4.1.2. Аддитивность
- •Прогрессирующая изоляция и прогрессирующая систематизация
- •4.1.2. Закономерности иерархической упорядоченности систем Интегративность
- •Коммуникативность
- •Эквифинальность
- •Закон необходимого разнообразия
- •Закономерность осуществимости и потенциальной эффективности систем
- •Закономерность целеобразования
- •Системный подход и системный анализ
- •5. Принципы построения иерархических информационных систем.
- •5.1. Виды и формы представления структур
- •5.2. Формализация иерархических понятий
- •5.2.1.Координация
- •5.2.2. Декомпозиция
- •5.2.3.Агрегация
- •6. Методы и модели описания информационных систем
- •6.1. Качественные методы описания систем
- •6.1.1. Эвристические методы решения творческих задач
- •6.1. Организация мозгового штурма
- •6.2. Критерии оценки идей
- •6.1.2.Методы типа сценариев.
- •6.1.3. Метод «дерева целей»
- •6.3. Дерево целей
- •6.1.4. Методы экспертных оценок.
- •6.1.5. Мажоритарная система выбора
- •А) Различные правила голосования
- •Б) Парадоксы голосования
- •6.1.6. Морфологические методы
- •6.2. Количественные методы описания систем.
- •6.3. Человеко – машиннные системы
- •6.3.1. Экспертные системы
- •6.3.2. Системы поддежки принятия решенй (сппр)
- •Основные виды сппр
- •7. Моделирование систем
- •7.1. Определение, структура, характеристики моделей
- •7.2. Соответствие между моделью и действительностью:
- •7.3. Классификация моделей по их назначению
- •7.4. Основные принципы моделирования
- •7.5. Классификация видов моделирования систем
- •8. Кибернетический подход к описанию ис.
- •8.1 Управление как процесс.
- •Штриховой линией выделена система управления (су), выполняющая функцию реализации целей управления z*, формируемых субъектом.
- •8.2 Системы управления (су) и сложный объект управления.
- •9. Динамическое описание ис
- •9.1. Модели ис в терминах «вход-выход»
- •9.2 Операторы переходов и выходов детерминированной ис без последствий
- •9.3 Детерминированные ис без последствий с входными сигналами двух классов.
- •9.4. Детерминированные ис с последствиями.
- •Стохастические системы.
- •Сигналы в системах (в разработке)
- •11. Информационные аспекты изучения систем
- •11.1. Энтропия, как мера степени неопределенности состояния физической системы
- •Энтропия сложной системы
- •Энтропия и информация
- •. Задача кодирования сообщений. Код Шеннона-Фено
- •Пропускная способность канала без помех.
- •. Пропускная способность канала с помехами.
- •Литература
Закономерности систем
4.1. Закономерности взаимодействия части и целого
4.1.1. Целостность (эмерджентность)
Закономерность целостности проявляется в системе в возникновении новых интегративных качеств, не свойственных образующим ее компонентам. Важные аспекты целостности:
С
войства системы (целого)
не являются простой суммой свойств
элементов
(несводимость целого к простой сумме
частей);
Объединенные в систему элементы утрачивают способность проявлять часть своих свойств, присущих им вне системы, т.е. система подавляет ряд свойств элементов.
С другой стороны, элементы попав в систему, получают возможность проявлять свои потенциальные свойства, которые не могли быть проявлены вне системы.
Пример. Транзистор может использоваться в различных режимах работы, но став элементом электронной системы он утратил эти возможности и сохранил только свойство работать в необходимом для этой схемы режиме.
Если в электронной системе транзистор вышел из строя или изменились его характеристики, то либо система перестанет существовать, либо изменится ее режим работы.
2. Свойства системы (целого) зависят от свойств элементов, частей (изменение в одной части вызывает изменение во всех остальных частях и во всей системе).
Пример. Если в электронной системе транзистор вышел из строя или
изменились его характеристики, то либо система перестанет существовать, либо изменится ее режим работы.
4.1.2. Аддитивность
В
есьма
актуальным является оценка степени
целостности системы при переходе из
одного состояния в другое. В связи с
этим возникает двойственное отношение
к закономерности целостности. Ее называют
физической аддитивностью, независимостью,
суммативностью, обособленностью.
Свойство физической аддитивности
проявляется у системы, как бы распавшейся
на независимые элементы. Строго говоря,
любая система находится всегда между
крайними точками как бы условной шкалы:
абсолютная целостность - абсолютная
аддитивность, и рассматриваемый этап
развития системы можно охарактеризовать
степенью проявления в ней одного или
другого свойства и тенденцией к его
нарастанию или уменьшению.
Прогрессирующая изоляция и прогрессирующая систематизация
Поскольку абсолютная целостность и абсолютная аддитивность не более чем абстракция, то реальные системы находятся где-то в промежуточной точке на оси целостность-аддитивность. Поскольку большинство реальных систем изменяются во времени, то их состояние в конкретный момент времени можно охарактеризовать тенденцией к изменению состояния в сторону целостности или аддитивности. Для оценки этих тенденций американский ученый А.Холл ввел две сопряженные закономерности, которые он назвал:
прогрессирующая факторизация - стремление системы к состоянию со все более независимыми элементами;
прогрессирующая систематизация - стремление системы к уменьшению самостоятельности элементов, т.е. большей целостности. Пример. В начале колонизации Америки группы людей из разных стран колонизировали различные ее области, и эти группы становились все более и более независимыми. В последующем стал усиливаться обмен, было образовано правительство, и новая страна становилась все более целостной.