- •М. В. Шкаруба материаловедение. Технология конструкционных материалов
- •Введение
- •Классификация материалов по электрическим свойствам
- •Классификация материалов по магнитным свойствам
- •Наибольшее распространение из конструкционных материалов нашли металлы и сплавы. Поэтому в разделе «Конструкционные материалы» основное внимание уделено металлам и сплавам.
- •Часть 1
- •Лабораторная работа № 1 исследование влияния температуры на емкость конденсатора и диэлектрические потери в нем
- •Теоретические положения
- •Порядок выполнения лабораторной работы
- •Лабораторная работа № 2 определение электрической прочности воздуха в равномерном и неравномерном электрических полях
- •Теоретические положения
- •Описание установки
- •Включение и отключение установки
- •Порядок выполнения работы
- •Лабораторная работа № 3 изучение физических явлений в сегнетоэлектрических материалах
- •Теоретические положения
- •Подготовка осциллографа gos-622g к работе
- •Порядок проведения работы
- •Лабораторная работа № 4 исследование влияния температуры на удельное сопротивление сплавов высокого сопротивления
- •Теоретические положения
- •Порядок выполнения лабораторной работы
- •Лабораторная работа № 5 исследование полупроводниковых терморезисторов
- •Теоретические положения
- •Порядок выполнения работы
- •Лабораторная работа № 6 исследование свойств электротехнической стали
- •Теоретические положения
- •Описание лабораторной установки
- •Подготовка приборов к работе
- •Порядок проведения лабораторной работы
- •Лабораторная работа № 7 исследование свойств ферримагнитных материалов
- •Теоретические сведения о магнитных свойствах материалов
- •Порядок выполнения лабораторной работы
- •Часть 2 лабораторные работы на эвм Общие сведения о программах
- •Описание установки
- •Подготовка к работе
- •Порядок выполнения работы
- •Лабораторная работа № 2 исследование влияния температуры на удельное сопротивление чистых металлических проводников
- •Теоретические положения
- •Описание установки и обработки результатов измерения
- •Порядок выполнения работы
- •Лабораторная работа № 3 исследование криопроводимости металлов
- •Теоретические положения
- •Описание установки
- •Порядок выполнения работы
- •Лабораторная работа № 4 исследование влияния температуры на удельное сопротивление сплавов высокого сопротивления
- •Теоретические положения
- •Описание установки
- •Порядок выполнения работы
- •Лабораторная работа № 5 исследование влияния температуры на удельную электропроводность полупроводника
- •Теоретические положения
- •Зависимость электропроводности полупроводников от температуры
- •Описание установки
- •Порядок выполнения работы
- •Лабораторная работа № 6 исследование нелинейных характеристик керамических полупроводников
- •Теоретические положения
- •Подготовка к работе
- •Порядок выполнения работы
- •Лабораторная работа № 7 исследование свойств ферримагнитных материалов
- •Лабораторная работа № 8 испытание материалов на растяжение
- •Подготовка к работе
- •Порядок выполнения работы
- •Библиографический список
- •Содержание
- •Часть 1. Лабораторные работы на стендах 5
- •Часть 2. Лабораторные работы на эвм 48
- •Лабораторная работа № 2
- •Исследование влияния температуры на удельное сопротивление сплавов высокого сопротивления 68
- •Лабораторная работа № 7
Теоретические положения
Терморезисторы − это полупроводниковые резисторы, значительно изменяющие свое сопротивление при изменении температуры. Они имеют большую величину температурного коэффициента сопротивления и нелинейную вольт-амперную характеристику.
К основным характеристикам терморезисторов относятся: номинальное сопротивление R, его температурная зависимость, подчиняющаяся экспоненциальному закону, и температурный коэффициент сопротивления (ТКR). Важное требование − стабильность этих характеристик при эксплуатации. В небольшом объеме терморезистора можно сосредоточить большое сопротивление (R изменяется в пределах от Ом до МОм), благодаря чему сопротивление электрической цепи, в которую включен терморезистор, будет в основном определяться сопротивлением терморезистора. Изменяя температуру терморезистора, можно регулировать ток в цепи.
Температурный коэффициент сопротивления (ТКR) терморезистора представляет собой относительное изменение сопротивления при изменении температуры на 1°C и выражается уравнением
TKR = ∙ ∙ ,
где TKR – температурный коэффициент сопротивления, 1/ ; R2 – сопротивление катушки при температуре t2; R1 – сопротивление катушки при температуре t1 (t2 > t1).
Для производства терморезисторов наибольший интерес представляют полупроводниковые материалы, обеспечивающие широкий диапазон номинального сопротивления R, различный температурный коэффициент удельного сопротивления, малый разброс параметров и т.д. Кроме того, желательно, чтобы характеристики этих материалов были малочувствительны к присутствию посторонней примеси и небольшим отклонениям от режима термообработки. Путем подбора определенного соотношения образующих компонентов получают заданные значения номинального сопротивления R и ТКR.
Важной характеристикой терморезисторов является также постоянная времени τ − время, в течение которого температура терморезистора изменяется в «е» раз (на 63 %) при переносе его из воздушной среды с температурой 120 °С в воздушную среду с температурой 20 °С. Постоянная времени τ у разных терморезисторов изменяется от 0,5 до 140 с.
В зависимости от строения полупроводникового материала ТКR может быть не только отрицательным, но и положительным в определенном интервале температур. При этом причины, приводящие к изменению сопротивления вследствие изменения температуры, будут различными у терморезисторов с положительным и отрицательным ТКR.
Полупроводниковые терморезисторы с отрицательным ТКR называют термисторами (рис. 5.1а). Их изготавливают из различных полупроводниковых материалов. У термисторов, полученных из монокристаллического ковалентного полупроводника (Si, Gе, SiС, GаР и др.), в интервале температур, соответствующем примесной или собственной электропроводности, ТКR имеет отрицательное значение. В данном случае с увеличением температуры электропроводность возрастает, а сопротивление снижается (в результате увеличения концентрации носителей заряда).
Зависимость сопротивления термисторов от температуры в диапазоне нескольких десятков градусов удовлетворительно описывается экспоненциальной функцией
где А – сопротивление при бесконечно большой температуре, В – коэффициент температурной чувствительности (его значения обычно лежат в диапазоне 1200–16000).
Коэффициент температурной чувствительности B можно определить по формуле
где T0 – начальное значение температуры термистора (градусы Кельвина) и R0 – сопротивление при этой температуре; Tm – максимальное значение температуры термистора и Rm – сопротивление при этой температуре.
Коэффициент А можно определить по формуле
а) б)
Рис. 5.1. Температурные зависимости термистора (а) и позистора (б)
В настоящее время в производстве термисторов наибольшее применение получили оксиды металлов переходной группы таблицы Д.И. Менделеева: Тi, V, Cr, Мn, Fе, Со, Ni, Сu, Zn. Полупроводниковая керамика на их основе имеет более низкую стоимость, чем монокристаллические полупроводники, что в значительной мере обусловливает ее широкое применение.
Величина ТКR термисторов зависит от ширины запрещенной зоны полупроводникового материала, из которого они изготовлены; она не постоянна и с повышением температуры уменьшается.
В производстве термисторов обычно используют смеси полупроводниковых оксидов металлов переходной группы периодической системы Д.И. Менделеева: СuО+Мn3О4; Мn3О4+NiO; Мn3О4+NiO+Со3О4, а также смеси оксидов железа с полупроводниками сложного состава: МnСо2О4, СuМn2О4, МgСr2О4 и др. Наиболее распространенными типами термисторов являются медномарганцевые (ММТ), кобальтомарганцевые (КМТ и СТ1) и меднокобальтомарганцевые (СТЗ).
Термисторы используют для температурной стабилизации электрических цепей и контуров, стабилизации режимов транзисторных каскадов, температурной компенсации электроизмерительных приборов, в устройствах измерения и регулирования температуры и устройствах автоматики и контроля.
Терморезисторы с положительным ТКR называют позисторами (рис. 5.1б). В основном позисторы производят из полупроводниковой керамики, обладающей точкой Кюри и большим положительным ТКR в узком интервале температур.
Описать зависимость сопротивления позисторов от температуры экспоненциальной функцией, к сожалению, не удается.
Наиболее распространенные − позисторы типов СТ5 и СТ6 − изготавливают из керамики на основе титаната бария ВаТiO3. Сопротивление такой керамики снижают путем добавления редкоземельных элементов. При нагревании ее сопротивление изменяется в 103−105 раз. Сопротивление керамики на основе ВаТiO3 определяется сопротивлением поверхностных слоев контактирующих между собой кристаллических зерен (кристаллитов).
В производстве позисторов иногда используют монокристаллический Si, Gе или другой ковалентный полупроводник. Положительный ТКR у этих материалов объясняется тем, что в области насыщения, в которой находится рабочий температурный интервал полупроводникового прибора, с увеличением температуры уменьшается подвижность носителей заряда, а их концентрация n не изменяется. Поэтому γ уменьшается и ТКR становится положительным. Позисторы, изготовленные из монокристаллического кремния с небольшой концентрацией примесей (1021–1023 м-3), имеют ТКR = (0,7–1,0)∙10-2 К-1 с положительным знаком в интервале от 20 до 100 °С. Эти позисторы в сравнении с поликристаллическими имеют меньший разброс характеристик.
Поликристаллические полупроводниковые материалы, имеющие более низкую стоимость и больший ТКR, чем монокристаллические, нашли широкое применение в производстве позисторов. Положительный ТКR у позисторов всех типов наблюдается в определенном интервале температур. При температурах выше или ниже этого интервала ТКR становится отрицательным.
Позисторы используют для бесконтактных термопереключателей, защиты элементов радиоаппаратуры от перегрузки по току, для зашиты электродвигателей в аппаратах записи и воспроизведения звука.
Некоторые характеристики термисторов и позисторов приведены в таблицах 5.1 и 5.2.
Таблица 5.1
Некоторые характеристики термисторов
Характеристика |
Тип термистора |
||
ММТ-4 |
КМТ-1 |
СТЗ-26 |
|
Пределы номинального сопротивления при 20 °С, кОм |
1–200 |
22–1000 |
0,1–0,68 |
ТКR при 20 °С, %/°С |
2,4–5,0 |
4,2–8,4 |
2,4–5,0 |
Интервал рабочих температур, °С |
–60–(+125) |
–60–(+180) |
–60–(+125) |
Постоянная времени, с, не более |
115 |
85 |
– |
Таблица 5.2
Некоторые характеристики позисторов
Характеристика |
Тип позистора |
||
СТ5-1 |
СТ6-1А |
СТб-ЗБ |
|
Пределы номинального сопротивления при 20°С, кОм |
20–150 |
40–400 |
1000–10 000 |
Максимальный ТКR при 20°С, %/°С |
15 |
10 |
15 |
Интервал рабочих температур, °С |
–60–(+200) |
–60–(+125) |
10–125 |
Постоянная времени, с, не более |
10–15 |
10–15 |
5 |
Кратность изменения сопротивления в области положительного ТКR |
103 |
103 |
|
Рис. 5.2. Фотография экспериментальной установки
