
- •Темы лекций
- •Лекционный курс
- •Курсовое проектирование
- •10. Бирюков с. Способы построения цепи обратной связи в схемах преобразователей напряжения // схемотехника. 2002. № 7. С. 9 - 10.
- •11. Хвастин с. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения // Схемотехника. 2002. № 5. С. 6, 7.
- •12. Косенко в., Косенко с.,Федоров в. Обратноходовой импульсный ип // Радио. 1999. № 12.С. 40 - 41.
- •Конспект лекций (расширенный)
- •1.Назначение и основные пути миниатюризации источников вторичного электропитания
- •2.Основные показатели стабилизированных источников вторичного электропитания
- •3.Классификация систем вторичного электропитания (свэп) и ивэп
- •4.Краткие сведения о напряжении питающей сети ивэп
- •5.Выпрямители.
- •5.1Однополупериодная (однофазная) схема выпрямителя
- •1.Определение параметров трансформатора
- •2.Определение параметров диода
- •3.Коэффициент пульсации выходного напряжения
- •5.Фазность схемы выпрямителя
- •5.2. Однофазная мостовая схема выпрямителя
- •5.3.Схема выпрямителя со средней точкой (двухполупериодная со средней точкой)
- •5.4.Трехфазная однотактная схема (Миткевича) выпрямителя
- •5.5.Трехфазная мостовая схема (Ларионова) выпрямителя
- •5.6.Шестифазные выпрямители по схеме треугольник-звезда и звезда- звезда
- •6. Электрические схемы сглаживающих фильтров.
- •6.3.Расчет индуктивного фильтра
- •6.4. Расчет активно-емкостного фильтра
- •6.5.Расчет емкостного фильтра
- •7.Параметрические стабилизаторы напряжения (псн)
- •7.1.Назначение и основные параметры и характеристики псн
- •7.2.Схема и принцип действия пСн вэ
- •7.3.Коэффициент стабилизации напряжения
- •8. Микросхемный стабилизатор напряжения типа кр142ен19
- •9.Микросхемные линейные стабилизаторы напряжения
- •9.2. Стабилизаторы напряжения с регулируемым выходным напряжением
- •1.1.1. Микросхемные стабилизаторы напряжения с регулирующим транзистором в плюсовом проводе выходной цепи Микросхемы серий 142ен1–142ен2, кр142ен1–кр142ен2
- •9.3. Интегральные стабилизаторы напряжения с фиксированным выходным напряжением
- •1.2.1. Микросхемные стабилизаторы серий 142ен5, 142ен8, 142ен9, кр1157, кр1162 и их основные электрические параметры
- •1.2.2. Примеры применения микросхемных стабилизаторов напряжения 142ен5, 142ен8, 142ен9
- •9.4. Двуполярные интегральные стабилизаторы напряжения
- •1.3.1. Микросхемные стабилизаторы напряжения серий 142ен6а, 142ен6б, к142ен6а – к142ен6г
- •1.3.2. Микросхемы кр142ен15а, кр142ен15б
- •10. Параллельные стабилизаторы серии к115
- •10.1. Параллельные стабилизаторы напряжения серии к11561
- •10.2. Регулируемые параллельные стабилизаторы напряжения серии к1242ер1
- •10.3. Стабилизаторы серии к1278
- •10.4. Мощные регулируемые стабилизаторы напряжения серии к1278ер1
- •Модуль 2.
- •11. Общая характеристика импульсных источников вторичного электропитания (ивэп)
- •2.2.Силовые части исн
- •2. 1. Сравнение импульсных и линейных источников ивэп
- •Глава 2. Импульсные стабилизаторы напряжения
- •2.1. Назначение и области использования
- •2.2.1. Схема и принцип действия понижающего исн
- •2.2.2. Принцип действия повышающего исн
- •Схемы силовых цепей инвертирующих исн приведены на рис. 88.
- •2.3. Методы стабилизации напряжения и эквивалентная схема системы управления импульсными ивэп
- •???Глава 3. Схемотехника Импульсных стабилизаторов
- •3.7. Микросхема кр142еп1 управления импульсным стабилизатором напряжения
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •Импульсные стабилизаторы напряжения на ис tl494.
- •Примечание - подробнее о самой микросхеме и принципе ее работы показа-но далее в параграфе 2.4.2. - шим регулятор на ис tl494.
- •3.1.1. Принципиальная схема импульсного понижающего стабилизатора на ис tl494
- •3.1.2. Принципиальная схема импульсного повышающего стабилизатора на ис tl494
- •3.1.3. Принципиальная схема импульсного инвертирующего стабилизатора на ис tl494
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •2.4. Системы управления исн на базе интегральных схем (ис)
- •2.4.1. Основные блоки ис для построения систем управления (су)
- •2.4.2. Шим регулятор на ис tl494 Интегральная микросхема управления tl494 двухтактным полумостовым импульсным преобразователем напряжения.
- •3.4. Импульсный стабилизатор напряжения на микросхеме lм2576аdj
- •Основные технические характеристики микросхем этой серии:
- •Частота коммутации, кГц……………………………………...… 52
- •Корпус………………………….……………пластмассовый то220-5
- •3.5. Импульсные стабилизаторы напряжения на ис uс3843
- •3.5.1. Импульсный стабилизатор напряжения с защитой от перегрузки по току и с повышенным кпд [17]
- •Входное напряжение, в……...........…..........................................8…16
- •3.5.2. Повышающий исн
- •3.6. Импульсный стабилизатор напряжения с n-канальным силовым транзистором
- •Модуль 3.
- •Глава 4. Функциональные узлы и схемотехника импульсных преобразователей напряжения ивэп
- •4.1. Структурные схемы импульсных источников питания
- •1.3. Классификация импульсных источников электропитания
- •4.2. Полумостовые преобразователи напряжения
- •4.2.1. Входные цепи
- •4.2.2. Усилители мощности
- •4.2.3.Упрощенная схема полумостового усилителя мощности
- •4.2.4. Согласующий каскад
- •4.3. Выходные цепи
- •4.4. Стабилизация выходного напряжения
- •4.10.2. Способы построения цепи обратной связи в схемах преобразователей напряжения
- •4.10.3. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения
- •Защита 4.5. Основные принципы построения различных вариантов схем защитного отключения
- •Защита - вниз 4.6. Схема «медленного пуска»
- •4.7. Электрические схемы двухтактных полумостовых преобразователей напряжения
- •6. Основы пРоектирование импульсных преобразователей напряжения
- •6.1. Методика расчета сетевого ивэп на ис кр1033еу15а (с примером)
- •6.2. Методика расчета ивэп для зарядки аккумуляторных батарей (автомобильных)
- •6.6. Подбор отечественных аналогов импортных трансформаторов в обратноходовом преобразователе
- •6.7. Дроссели для импульсных источников питания на ферритовых кольцах
- •6.8. Проектирование обратноходовых иИп topSwitch-II с помощью программы vds
- •Глава 7. Импульсные источники питания на микроконтроллерах
- •7.2. Импульсный преобразователь напряжения на микроконтроллере фирмы Microchip
- •Основные технические характеристики
- •Номинальное выходное напряжение каналов, в 12 или 5
- •7.3. Автомобилный релейный импульсный источник питания на микроконтроллере фирмы Microchip
- •7.4. Источник питания проблескового фонаря на светодиодах
- •7.5. Зарядное устройство на основе микроконтроллера ht46r47 фирмы Holtek Semiconductor
- •Особенности зарядки аккумуляторов
- •Защита надо связать гл.2 со схемой медленного пуска
- •Глава 2. Схемы простейших устройств защиты и зарядки
- •2.1. Стабилизатор напряжения на микросхеме кр142ен19 с защитой
- •Емкостной – с– фильтр
- •Трехфазная мостовая схема выпрямителя
- •Шестифазная однотактная схема выпрямителя
- •На число, месяц, год
- •6.Наумов н.Н.
- •9. Алексеев г/б
- •III. Сведения по выплатам (в разрезе оказываемых услуг):
- •2.За предыдущие годы долг капо составляет:
- •Расход:
- •Спасибо !!! конец - январь -2013 –год
- •Где эти деньги (684000 руб.) я не знаю
- •Конец гр.05. Наихудший случай:
- •После чего общая сумма оплаты за обучение в 2012 году должна быть равна:
- •А с учетом остатка за 2011 г., равного 460777 (517559 руб.), получим:
- •Уважаемая галина ивановна !
- •Сведения о студентах
5.5.Трехфазная мостовая схема (Ларионова) выпрямителя
Трехфазная мостовая схема (m=6) включается в трехфазную сеть переменного тока, равномерно загружая ее. она широко используется как для получения низких (U0≥10 В), так и высоких напряжений (до нескольких десятков киловольт) при токах нагрузки от сотен миллиампер до десятков и сотен (а то и тысяч) ампер (при больших мощностях схема работает на индуктивную, а при малых – на емкостную нагрузку).Трехфазная мостовая схема является энергетически наиболее экономичной; обратное напряжение, приходящееся на один диод в этой схеме мало (Uобр. ≈ U0), коэффициент пульсации на ушестеренной частоте напряжения сети (f = 6fс) самый малень-кий из всех схем и равен Кп = 0,057 (теоретически).
а Рис.6 б
Трехфазная мостовая схема может быть включена непосредственно в питающую трехфазную сеть без промежуточного трансформатора.
Принцип действия рассматриваемой схемы сводится к тому, что в любой момент времени в четной группе диодов открыт диод той фазы, напряжение в которой наибольшее и положительное, а в нечетной группе диодов открыт диод той фазы, напряжение в которой наибольшее и отрицательное.
1.Первичные и вторичные обмотки трансформатора включаются по схеме звезда-звезда Uобр.= 2U0.
2.Среднее значение выпрямленного напряжения U0 связаны с действующим значением напряжения во вторичной обмотке трансформатора соотноше-нием U0 = 2,34U2.фаз.
3.Действующее значение напряжения
U2.фаз. =0,43 U0.
4.Линейное значение напряжения во вторичной обмотке трансформатора
U2л = (0,74 U0) = U2 фаз √3.
5.Действующее значение тока во вторичной обмотке
I2 = 0,815 I0.
6.Коэффициент трансформации трансформатора
Кт= u2/u1.
7.Действующее значение тока в первичной обмотке
i1 = Кт i2.
8.Типовая (габаритная)мощность трансформатора определяется
Ртип = 1,045Р0.
9.Обратное значение напряжения на диоде
Uобр = 1,45U0.
10.Прямой ток через диод найдем из выражения
IVD.пр. = 0,33I0.
11.коэффициент пульсации на выходе выпрямителя равен
Kкп = 0,057 (5,7%).
12..Частота выпрямленного напряжения определяется по формуле
f0 = 6fc.
13.фазность выпрямителя равна (число импульсов выпрямленного напряже-ния) m = 6.
14.Коэффициент сглаживания q сгл. пульсации выходного напряжения с емкостным фильтром равен q сгл. = (mὼСRЭКВ.)/RH .
Схема может работать без трансформатора на активный, емкостной и индуктивный характер нагрузки. Эта схем энергетически наилучшая из всех рассмотренных.
К недостаткам схемы можно отнести большое количество диодов (шесть). Одновременно ток проводят два диода, что приводит к увеличению падения напряжения на них, а, следовательно, ухудшению коэффициента полезного действия. Этот недостаток относится к случаям, когда необходимо на нагрузке получить малые значения напряжения (3-12 вольт).