
- •Темы лекций
- •Лекционный курс
- •Курсовое проектирование
- •10. Бирюков с. Способы построения цепи обратной связи в схемах преобразователей напряжения // схемотехника. 2002. № 7. С. 9 - 10.
- •11. Хвастин с. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения // Схемотехника. 2002. № 5. С. 6, 7.
- •12. Косенко в., Косенко с.,Федоров в. Обратноходовой импульсный ип // Радио. 1999. № 12.С. 40 - 41.
- •Конспект лекций (расширенный)
- •1.Назначение и основные пути миниатюризации источников вторичного электропитания
- •2.Основные показатели стабилизированных источников вторичного электропитания
- •3.Классификация систем вторичного электропитания (свэп) и ивэп
- •4.Краткие сведения о напряжении питающей сети ивэп
- •5.Выпрямители.
- •5.1Однополупериодная (однофазная) схема выпрямителя
- •1.Определение параметров трансформатора
- •2.Определение параметров диода
- •3.Коэффициент пульсации выходного напряжения
- •5.Фазность схемы выпрямителя
- •5.2. Однофазная мостовая схема выпрямителя
- •5.3.Схема выпрямителя со средней точкой (двухполупериодная со средней точкой)
- •5.4.Трехфазная однотактная схема (Миткевича) выпрямителя
- •5.5.Трехфазная мостовая схема (Ларионова) выпрямителя
- •5.6.Шестифазные выпрямители по схеме треугольник-звезда и звезда- звезда
- •6. Электрические схемы сглаживающих фильтров.
- •6.3.Расчет индуктивного фильтра
- •6.4. Расчет активно-емкостного фильтра
- •6.5.Расчет емкостного фильтра
- •7.Параметрические стабилизаторы напряжения (псн)
- •7.1.Назначение и основные параметры и характеристики псн
- •7.2.Схема и принцип действия пСн вэ
- •7.3.Коэффициент стабилизации напряжения
- •8. Микросхемный стабилизатор напряжения типа кр142ен19
- •9.Микросхемные линейные стабилизаторы напряжения
- •9.2. Стабилизаторы напряжения с регулируемым выходным напряжением
- •1.1.1. Микросхемные стабилизаторы напряжения с регулирующим транзистором в плюсовом проводе выходной цепи Микросхемы серий 142ен1–142ен2, кр142ен1–кр142ен2
- •9.3. Интегральные стабилизаторы напряжения с фиксированным выходным напряжением
- •1.2.1. Микросхемные стабилизаторы серий 142ен5, 142ен8, 142ен9, кр1157, кр1162 и их основные электрические параметры
- •1.2.2. Примеры применения микросхемных стабилизаторов напряжения 142ен5, 142ен8, 142ен9
- •9.4. Двуполярные интегральные стабилизаторы напряжения
- •1.3.1. Микросхемные стабилизаторы напряжения серий 142ен6а, 142ен6б, к142ен6а – к142ен6г
- •1.3.2. Микросхемы кр142ен15а, кр142ен15б
- •10. Параллельные стабилизаторы серии к115
- •10.1. Параллельные стабилизаторы напряжения серии к11561
- •10.2. Регулируемые параллельные стабилизаторы напряжения серии к1242ер1
- •10.3. Стабилизаторы серии к1278
- •10.4. Мощные регулируемые стабилизаторы напряжения серии к1278ер1
- •Модуль 2.
- •11. Общая характеристика импульсных источников вторичного электропитания (ивэп)
- •2.2.Силовые части исн
- •2. 1. Сравнение импульсных и линейных источников ивэп
- •Глава 2. Импульсные стабилизаторы напряжения
- •2.1. Назначение и области использования
- •2.2.1. Схема и принцип действия понижающего исн
- •2.2.2. Принцип действия повышающего исн
- •Схемы силовых цепей инвертирующих исн приведены на рис. 88.
- •2.3. Методы стабилизации напряжения и эквивалентная схема системы управления импульсными ивэп
- •???Глава 3. Схемотехника Импульсных стабилизаторов
- •3.7. Микросхема кр142еп1 управления импульсным стабилизатором напряжения
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •Импульсные стабилизаторы напряжения на ис tl494.
- •Примечание - подробнее о самой микросхеме и принципе ее работы показа-но далее в параграфе 2.4.2. - шим регулятор на ис tl494.
- •3.1.1. Принципиальная схема импульсного понижающего стабилизатора на ис tl494
- •3.1.2. Принципиальная схема импульсного повышающего стабилизатора на ис tl494
- •3.1.3. Принципиальная схема импульсного инвертирующего стабилизатора на ис tl494
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •2.4. Системы управления исн на базе интегральных схем (ис)
- •2.4.1. Основные блоки ис для построения систем управления (су)
- •2.4.2. Шим регулятор на ис tl494 Интегральная микросхема управления tl494 двухтактным полумостовым импульсным преобразователем напряжения.
- •3.4. Импульсный стабилизатор напряжения на микросхеме lм2576аdj
- •Основные технические характеристики микросхем этой серии:
- •Частота коммутации, кГц……………………………………...… 52
- •Корпус………………………….……………пластмассовый то220-5
- •3.5. Импульсные стабилизаторы напряжения на ис uс3843
- •3.5.1. Импульсный стабилизатор напряжения с защитой от перегрузки по току и с повышенным кпд [17]
- •Входное напряжение, в……...........…..........................................8…16
- •3.5.2. Повышающий исн
- •3.6. Импульсный стабилизатор напряжения с n-канальным силовым транзистором
- •Модуль 3.
- •Глава 4. Функциональные узлы и схемотехника импульсных преобразователей напряжения ивэп
- •4.1. Структурные схемы импульсных источников питания
- •1.3. Классификация импульсных источников электропитания
- •4.2. Полумостовые преобразователи напряжения
- •4.2.1. Входные цепи
- •4.2.2. Усилители мощности
- •4.2.3.Упрощенная схема полумостового усилителя мощности
- •4.2.4. Согласующий каскад
- •4.3. Выходные цепи
- •4.4. Стабилизация выходного напряжения
- •4.10.2. Способы построения цепи обратной связи в схемах преобразователей напряжения
- •4.10.3. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения
- •Защита 4.5. Основные принципы построения различных вариантов схем защитного отключения
- •Защита - вниз 4.6. Схема «медленного пуска»
- •4.7. Электрические схемы двухтактных полумостовых преобразователей напряжения
- •6. Основы пРоектирование импульсных преобразователей напряжения
- •6.1. Методика расчета сетевого ивэп на ис кр1033еу15а (с примером)
- •6.2. Методика расчета ивэп для зарядки аккумуляторных батарей (автомобильных)
- •6.6. Подбор отечественных аналогов импортных трансформаторов в обратноходовом преобразователе
- •6.7. Дроссели для импульсных источников питания на ферритовых кольцах
- •6.8. Проектирование обратноходовых иИп topSwitch-II с помощью программы vds
- •Глава 7. Импульсные источники питания на микроконтроллерах
- •7.2. Импульсный преобразователь напряжения на микроконтроллере фирмы Microchip
- •Основные технические характеристики
- •Номинальное выходное напряжение каналов, в 12 или 5
- •7.3. Автомобилный релейный импульсный источник питания на микроконтроллере фирмы Microchip
- •7.4. Источник питания проблескового фонаря на светодиодах
- •7.5. Зарядное устройство на основе микроконтроллера ht46r47 фирмы Holtek Semiconductor
- •Особенности зарядки аккумуляторов
- •Защита надо связать гл.2 со схемой медленного пуска
- •Глава 2. Схемы простейших устройств защиты и зарядки
- •2.1. Стабилизатор напряжения на микросхеме кр142ен19 с защитой
- •Емкостной – с– фильтр
- •Трехфазная мостовая схема выпрямителя
- •Шестифазная однотактная схема выпрямителя
- •На число, месяц, год
- •6.Наумов н.Н.
- •9. Алексеев г/б
- •III. Сведения по выплатам (в разрезе оказываемых услуг):
- •2.За предыдущие годы долг капо составляет:
- •Расход:
- •Спасибо !!! конец - январь -2013 –год
- •Где эти деньги (684000 руб.) я не знаю
- •Конец гр.05. Наихудший случай:
- •После чего общая сумма оплаты за обучение в 2012 году должна быть равна:
- •А с учетом остатка за 2011 г., равного 460777 (517559 руб.), получим:
- •Уважаемая галина ивановна !
- •Сведения о студентах
Защита 4.5. Основные принципы построения различных вариантов схем защитного отключения
Назначение схем защиты заключается в ограничении потребляемого от сети тока. Это делается для того, чтобы предотвратить выжигание чрезмерно большим током в первую очередь силовых транзисторов инвертора.
Срабатывание любой из защитных схем ведет к отключению напряжения посредством воздействия на управляющую микросхему ИБП.
Полный состав комбинированной защиты включает в себя:
схему контроля ширины управляющего импульса;
схему защитного отключения при КЗ в нагрузке;
схему защиты от выходного перенапряжения.
Механизмы защитного отключения и ограничения максимальной ширины управляющего импульса заложены в архитектуру ИС TL494 и являются базовыми при конструировании разных защитных схем (рис.33…36). При возникновении КЗ в нагрузке сначала управляющая микросхема переходит в режим ограничения, и если КЗ продолжает развиваться, то происходит защитное отключение.
Суть и смысл защитного отключения заключаются в том, чтобы силовые транзисторы инвертора переставали переключаться и оставались бы в закрытом состоянии неограниченно долго при возникновении аварийной ситуации, называемой коротким замыканием в нагрузке любого из выходных каналов ИБП. Для того чтобы оба силовых транзистора инвертора оказались закрыты одновременно, на их базах не должно быть управляющих импульсов. Тогда первичная обмотка силового импульсного трансформатора окажется отключенной от шины выпрямленного напряжения сети и, следовательно, через первичную обмотку и силовые транзисторы не будет протекать ток. Поэтому силовые транзисторы не будут подвержены опасности выжигания этим чрезмерно большим током при КЗ на вторичной стороне. Таким образом при исчезновении управляющих импульсов на базах силовых транзисторов желаемый защитный эффект будет достигнут.
Источником (генератором) управляющих импульсов является микросхема TL494. Поэтому для осуществления защитного отключения необходимо заблокировать ее работу. Это можно сделать, если принудительно заставить любой из компараторов DA1, DA2 прекратить переключения и перейти в статическое состояние с постоянным высоким уровнем напряжения (логическая 1) на выходе. Тогда работа всего цифрового тракта микросхемы будет заблокирована. Оба выходных транзистора ее окажутся в статическом закрытом состоянии и управляющие импульсы на выводах 8 и 11 (либо 9 и 10) исчезнут, превратившись в статические потенциалы, которые не могут передаться на базы силовых транзисторов, т.к. связь с ними осуществляется через управляющий трансформатор TV1. Для того чтобы прекратить переключения компаратора DA1 либо DA2, достаточно на его неинвертирующий вход (вывод 4 для компаратора, DA1 либо вывод 3 для компаратора DA2) подать статический потенциал, превышающий амплитуду пилообразного напряжения, поступающего на инвертирующие входы обоих компараторов (вывод 5) с выхода генератора пилообразного напряжения DA6.
Амплитуда пилообразного напряжения составляет +3,2 В. Поэтому, если построить схему защиты так, что на вывод 4 либо на вывод 3 ИС TL494 в результате короткого замыкания в нагрузке будет подан статический потенциал, превышающий +3,2 В, то произойдет блокировка работы ИС. Однако генератор пилообразного напряжения при этом не прекращает своей работы, т.е., несмотря на отсутствие выходных импульсов, пилообразное напряжение продолжает вырабатываться.
Этот базовый принцип и положен в основу построения всех вариантов схем защитного отключения, применяемых в разных схемах импульсных блоков питания на основе управляющей микросхемы TL494. При этом необходимо понимать, что термин «защитное отключение» подразумевает отключение (закрывание) именно силовых транзисторов инвертора, а не управляющей микросхемы, которая продолжает работать в специфическом режиме блокировки ее цифрового тракта до тех пор, пока на шине питания микросхемы Upom имеется напряжение, превышающее уровень +7 В.
Датчиком для типовой схемы защитного отключения обычно является диодно-резистивньй либо резистивный делитель, подключаемый к шинам выходных напряжений ИБП. Такой делитель «контролирует» уровень напряжения на этих шинах. При КЗ в нагрузке какой-либо из контролируемых шин изменяется распределение потенциалов в узлах такого делителя-датчика, что и является сигналом на срабатывание для схемы защитного отключения.
Механизм ограничения максимальной длительности управляющего импульса имеет другую структуру. Из функциональной схемы микросхемы TL494 (рис. 34 функциональной схемы TL494 и рис. 35) видно, что напряжение на неинвертирующем входе ШИМ-компаратора DA2 определяется наибольшим из выходных напряжений двух усилителей ошибки DA3, DA4.
Для того чтобы выходные напряжения усилителей DA3, DA4 не влияли бы друг на друга, выходы этих усилителей подключены к неинвертирующему входу ШИМ-компаратора DA2 через развязывающие диоды, расположенные внутри микросхемы.
Основная идея, заложенная в построение механизма ограничения, состоит в том, что усилитель DA4 включается так; чтобы изменение его выходного напряжения при растущей ширине управляющих импульсов, было бы противоположным изменению выходного напряжения усилителя DA3.
Если в нагрузке возник режим повышенного токопотребления (начальная стадия КЗ). Выходное напряжение в канале +5 В уменьшается. Это уменьшение через цепь обратной связи передается на неинвертирующий вход усилителя ошибки DA3 (вывод 1 микросхемы). Выходное напряжение DA3, а значит, и напряжение на неинвертирующем входе ШИМ-компаратора DA2 начинает уменьшаться. Благодаря этому ширина выходных управляющих импульсов микросхемы возрастает, т.е. управляющая микросхема стремится поддержать выходные напряжения ИП на прежнем уровне за счет увеличения времени открытого состояния силовых транзисторов. На один из входов усилителя ошибки DA4 подается сигнал обратной связи, уровень которого пропорционален ширине управляющих импульсов (времени открытого состояния силовых транзисторов). Уровень этого сигнала в рассматриваемой ситуации будет возрастать. При этом DA4 включается так, что выходное напряжение его с ростом уровня сигнала обратной связи также растет. В результате имеют место два противоположно направленных процесса. Выходное напряжение усилителя ошибки DA3 уменьшается (как результат уменьшения выходных напряжений ИП), а выходное напряжение усилителя ошибки DA4 растет (как результат увеличения ширины управляющих импульсов). Пока выходное напряжение усилителя DA3 превышает выходное напряжение усилителя DA4, оно является превалирующим и определяет уровень напряжения на неинвертирующем входе ШИМ-компаратора DA2, а значит, и ширину выходных импульсов, которая растет со скоростью, равной скорости уменьшения выходного напряжения усилителя DA3.
Однако наступает момент, когда убывающее выходное напряжение усилителя DA3 сравнивается с растущим выходным напряжением усилителя DA4. После этого выходное напряжение усилителя DA3 становится меньше, чем выходное напряжение усилителя DA4 и перестает влиять на ширину выходных импульсов микросхемы. Другими словами, в этот момент происходит "передача" управляющих функций от усилителя DA3 к усилителю DA4. Ширина выходных импульсов определяется теперь только выходным напряжением усилителя DA4, которое не зависит от уровня выходных напряжений преобразователя и сигнала обратной связи на выводе 1 микросхемы. Поэтому увеличение ширины выходных импульсов прекращается.
Параметры элементов схемы рассчитываются таким образом, чтобы ограничение происходило на безопасном для транзисторов инвертора уровне. При этом скорость, с которой система переходит в режим ограничения, а также уровень этого ограничения, зависят от наличия и глубины обратных связей, которые могут организовываться с помощью внешних RC-цепочек в различной комбинации, охватывающих усилитель ошибки DA4.
Далее микросхема переходит в специфический режим работы называемый режимом ограничения. Этот режим характеризуется тем, что ширина управляющих импульсов на выходах микросхемы неизменна и не зависит от уровня выходных напряжений ИП.
Другими словами, механизм ШИМ в режиме ограничения отключается (не действует).
Если КЗ в нагрузке самоустранилось по истечении некоторого времени, то накопительные конденсаторы вторичной стороны быстро заряжаются. Поэтому сигнал обратной связи, поступающий на неинвертирующий вход усилителя DA3, начинает возрастать. Следовательно, начинает возрастать и выходное напряжение DA3. Когда это напряжение достигнет уровня выходного напряжения усилителя DA4, то вновь произойдет передача управления, и управляющие функции перейдут от усилителя DA4 к усилителю DA3.
Если КЗ в нагрузке не самоустранилось, то поскольку имеет место режим ограничения, микросхема не в состоянии поддерживать напряжения на выходных шинах ИП. Поэтому выходные напряжения ИБП быстро уменьшаются, что приводит к срабатыванию механизма защитного отключения.
Защитное отключение, как было показано выше, имеет своим результатом прекращение протекания тока через силовые транзисторы и первичную обмотку импульсного трансформатора. Поэтому сигнал от токового датчика, поступающий на усилитель ошибки DA4, становится равным 0. Схема ИП приходит в исходное состояние. Поэтому срабатывает схема пуска и преобразователь попытается вновь выйти в номинальный режим. Если за это время КЗ в нагрузке самоустранилось, то выход на режим ничем не будет отличаться от первоначального запуска при включении ИП в сеть. Если же КЗ не самоустранилось, то процессы повторятся, и ИП перейдет в специфический аварийный «икающий» режим, который представляет собой периодически повторяющийся процесс защитного отключения.
В качестве датчика ширины управляющих импульсов могут использоваться разные элементы. Информацию о ширине управляющих импульсов можно получить как с первичной, так и со вторичной стороны ИП. Поэтому традиционными являются два основных способа, которые позволяют получить желаемый эффект контроля при минимальных затратах и простоте схемотехнической реализации.
Первый из этих способов заключается в том, что управляющие импульсы снимаются либо со средней точки первичной обмотки управляющего трансформатора, либо со специальной дополнительной обмотки этого трансформатора, которые находятся на вторичной стороне ИП. Далее из этой импульсной последовательности выделяется постоянная составляющая. Уровень этой составляющей и несет в себе информацию о ширине управляющих импульсов.
Способ получения информации о ширине управляющих импульсов с первичной стороны ИП заключается в том, что в цепь протекания тока первичной обмотки силового импульсного трансформатора последовательно включается первичная (токовая) обмотка трансформатора тока. Применение в качестве датчика такого элемента как трансформатор объясняется необходимостью гальванической развязки вторичной стороны ИП от первичной.
Ток через первичную обмотку силового импульсного трансформатора имеет импульсную форму, причем ширина токовых импульсов определяется временем открытого состояния силовых транзисторов инвертора, т.е. шириной управляющих импульсов на базах этих транзисторов. Поэтому напряжение на нагрузке вторичной обмотки трансформатора тока также будет импульсным, причем длительность этих импульсов будет равна длительности управляющих импульсов, вырабатываемых микросхемой. Далее, как и в первом случае, из этого импульсного напряжения выделяется постоянная составляющая (посредством выпрямления и фильтрации). Уровень постоянной составляющей несет в себе информацию о ширине управляющих импульсов.
Контролируемый сигнал, уровень которого зависит от ширины управляющих импульсов, подается на один из двух входов усилителя ошибки DA4. На второй вход этого усилителя для сравнения подается эталонное напряжение, уровень которого выбирается для каждой конкретной схемы ИП исходя из построения всей защитной схемы в целом. Этот уровень лежит в диапазоне от 0 (в этом случае опорный вход усилителя DA4 заземлен) до +5 В (в этом случае на опорный вход усилителя DA4 подается напряжение Uref). Если опорный уровень выбирается внутри этого диапазона, то к шине Uref подключается резистивный делитель и опорное напряжение необходимого уровня снимается с него. В качестве опорного входа обычно выбирается неинвертирующий вход усилителя DA4 (вывод 16 микросхемы), а контролируемый сигнал подается на инвертирующий вход (вывод 15). Однако возможен и обратный вариант включения усилителя DA4. При этом основным правилом, которое необходимо соблюсти при построении схемы ограничения, является то, что с ростом ширины управляющих импульсов выходное напряжение усилителя DA4 должно расти.
Практические схемы ИП на основе управляющей микросхемы TL494 могут быть построены как с использованием обоих защитных механизмов, так и с использованием только одного из них. В схемах, использующих оба механизма, при повышенном токопотреблении в нагрузке сильноточных каналов сначала имеет место режим ограничения ширины управляющих импульсов, и лишь то-лько затем, если КЗ продолжает развиваться, наступает защитное отключение.
В схемах с использованием только механизма защитного отключения чрезмерная ширина управляющих импульсов сразу вызывает защитное отключение. Сигнал с датчика ширины управляющих импульсов в этих схемах подается на неинвертирующий вход какого-либо из компараторов DA1, DA2. Так как механизм ограничения в этих схемах не используется, то усилитель ошибки DA4 становится не нужен. Поэтому его принудительно выставляют в состояние жесткого нуля по выходу с тем, чтобы его выходное напряжение не влияло бы на входное напряжение ШИМ-компаратора DA2 ни при каких условиях. Для этого на инвертирующий вход DA4 (вывод 15) сразу при включении ИП подается опорное напряжение Uref с вывода 14, а неинвертирующий вход (вывод 16) заземляется.
Отказ от использования механизма ограничения при построении комбинированной защиты принципиально возможен, т.к. в архитектуре самой управляющей микросхемы уже заложено ограничение максимальной ширины выходного импульса. Уровень этого ограничения определяется потенциалом на выводе 4 микросхемы в установившемся режиме, а также источником напряжения DA7 (0,1 В), подключенным между выводом 4 и неинвертирующим входом компаратора DA1. Таким образом, внешняя схема ограничения (если она имеется) дублирует внутреннюю схему, повышая надежность работы ИП и уменьшая вероятность выхода из строя силовых транзисторов инвертора.
Также существует защита от выходного перенапряжения. Датчиком схемы защиты от выходного перенапряжения обычно является пороговая схема, состоящая из стабилитрона с соответствующим пробивным напряжением и балластного резистора. Стабилитрон подключается к шине контролируемого напряжения. При превышении этим напряжением заданного расчетного уровня стабилитрон пробивается, и на балластном резисторе появляется потенциал как результат протекания по нему тока стабилитрона. Появление этого потенциала используется как сигнал на срабатывание для схемы защитного отключения.
Наличие всех перечисленных защитных схем в преобразователе напряжения не является обязательным. Некоторые из них могут отсутствовать.
Таким образом, рассмотрены все узлы импульсного преобразователя напряжения на микросхеме TL494 и принципы их построения.