
- •Темы лекций
- •Лекционный курс
- •Курсовое проектирование
- •10. Бирюков с. Способы построения цепи обратной связи в схемах преобразователей напряжения // схемотехника. 2002. № 7. С. 9 - 10.
- •11. Хвастин с. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения // Схемотехника. 2002. № 5. С. 6, 7.
- •12. Косенко в., Косенко с.,Федоров в. Обратноходовой импульсный ип // Радио. 1999. № 12.С. 40 - 41.
- •Конспект лекций (расширенный)
- •1.Назначение и основные пути миниатюризации источников вторичного электропитания
- •2.Основные показатели стабилизированных источников вторичного электропитания
- •3.Классификация систем вторичного электропитания (свэп) и ивэп
- •4.Краткие сведения о напряжении питающей сети ивэп
- •5.Выпрямители.
- •5.1Однополупериодная (однофазная) схема выпрямителя
- •1.Определение параметров трансформатора
- •2.Определение параметров диода
- •3.Коэффициент пульсации выходного напряжения
- •5.Фазность схемы выпрямителя
- •5.2. Однофазная мостовая схема выпрямителя
- •5.3.Схема выпрямителя со средней точкой (двухполупериодная со средней точкой)
- •5.4.Трехфазная однотактная схема (Миткевича) выпрямителя
- •5.5.Трехфазная мостовая схема (Ларионова) выпрямителя
- •5.6.Шестифазные выпрямители по схеме треугольник-звезда и звезда- звезда
- •6. Электрические схемы сглаживающих фильтров.
- •6.3.Расчет индуктивного фильтра
- •6.4. Расчет активно-емкостного фильтра
- •6.5.Расчет емкостного фильтра
- •7.Параметрические стабилизаторы напряжения (псн)
- •7.1.Назначение и основные параметры и характеристики псн
- •7.2.Схема и принцип действия пСн вэ
- •7.3.Коэффициент стабилизации напряжения
- •8. Микросхемный стабилизатор напряжения типа кр142ен19
- •9.Микросхемные линейные стабилизаторы напряжения
- •9.2. Стабилизаторы напряжения с регулируемым выходным напряжением
- •1.1.1. Микросхемные стабилизаторы напряжения с регулирующим транзистором в плюсовом проводе выходной цепи Микросхемы серий 142ен1–142ен2, кр142ен1–кр142ен2
- •9.3. Интегральные стабилизаторы напряжения с фиксированным выходным напряжением
- •1.2.1. Микросхемные стабилизаторы серий 142ен5, 142ен8, 142ен9, кр1157, кр1162 и их основные электрические параметры
- •1.2.2. Примеры применения микросхемных стабилизаторов напряжения 142ен5, 142ен8, 142ен9
- •9.4. Двуполярные интегральные стабилизаторы напряжения
- •1.3.1. Микросхемные стабилизаторы напряжения серий 142ен6а, 142ен6б, к142ен6а – к142ен6г
- •1.3.2. Микросхемы кр142ен15а, кр142ен15б
- •10. Параллельные стабилизаторы серии к115
- •10.1. Параллельные стабилизаторы напряжения серии к11561
- •10.2. Регулируемые параллельные стабилизаторы напряжения серии к1242ер1
- •10.3. Стабилизаторы серии к1278
- •10.4. Мощные регулируемые стабилизаторы напряжения серии к1278ер1
- •Модуль 2.
- •11. Общая характеристика импульсных источников вторичного электропитания (ивэп)
- •2.2.Силовые части исн
- •2. 1. Сравнение импульсных и линейных источников ивэп
- •Глава 2. Импульсные стабилизаторы напряжения
- •2.1. Назначение и области использования
- •2.2.1. Схема и принцип действия понижающего исн
- •2.2.2. Принцип действия повышающего исн
- •Схемы силовых цепей инвертирующих исн приведены на рис. 88.
- •2.3. Методы стабилизации напряжения и эквивалентная схема системы управления импульсными ивэп
- •???Глава 3. Схемотехника Импульсных стабилизаторов
- •3.7. Микросхема кр142еп1 управления импульсным стабилизатором напряжения
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •Импульсные стабилизаторы напряжения на ис tl494.
- •Примечание - подробнее о самой микросхеме и принципе ее работы показа-но далее в параграфе 2.4.2. - шим регулятор на ис tl494.
- •3.1.1. Принципиальная схема импульсного понижающего стабилизатора на ис tl494
- •3.1.2. Принципиальная схема импульсного повышающего стабилизатора на ис tl494
- •3.1.3. Принципиальная схема импульсного инвертирующего стабилизатора на ис tl494
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •2.4. Системы управления исн на базе интегральных схем (ис)
- •2.4.1. Основные блоки ис для построения систем управления (су)
- •2.4.2. Шим регулятор на ис tl494 Интегральная микросхема управления tl494 двухтактным полумостовым импульсным преобразователем напряжения.
- •3.4. Импульсный стабилизатор напряжения на микросхеме lм2576аdj
- •Основные технические характеристики микросхем этой серии:
- •Частота коммутации, кГц……………………………………...… 52
- •Корпус………………………….……………пластмассовый то220-5
- •3.5. Импульсные стабилизаторы напряжения на ис uс3843
- •3.5.1. Импульсный стабилизатор напряжения с защитой от перегрузки по току и с повышенным кпд [17]
- •Входное напряжение, в……...........…..........................................8…16
- •3.5.2. Повышающий исн
- •3.6. Импульсный стабилизатор напряжения с n-канальным силовым транзистором
- •Модуль 3.
- •Глава 4. Функциональные узлы и схемотехника импульсных преобразователей напряжения ивэп
- •4.1. Структурные схемы импульсных источников питания
- •1.3. Классификация импульсных источников электропитания
- •4.2. Полумостовые преобразователи напряжения
- •4.2.1. Входные цепи
- •4.2.2. Усилители мощности
- •4.2.3.Упрощенная схема полумостового усилителя мощности
- •4.2.4. Согласующий каскад
- •4.3. Выходные цепи
- •4.4. Стабилизация выходного напряжения
- •4.10.2. Способы построения цепи обратной связи в схемах преобразователей напряжения
- •4.10.3. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения
- •Защита 4.5. Основные принципы построения различных вариантов схем защитного отключения
- •Защита - вниз 4.6. Схема «медленного пуска»
- •4.7. Электрические схемы двухтактных полумостовых преобразователей напряжения
- •6. Основы пРоектирование импульсных преобразователей напряжения
- •6.1. Методика расчета сетевого ивэп на ис кр1033еу15а (с примером)
- •6.2. Методика расчета ивэп для зарядки аккумуляторных батарей (автомобильных)
- •6.6. Подбор отечественных аналогов импортных трансформаторов в обратноходовом преобразователе
- •6.7. Дроссели для импульсных источников питания на ферритовых кольцах
- •6.8. Проектирование обратноходовых иИп topSwitch-II с помощью программы vds
- •Глава 7. Импульсные источники питания на микроконтроллерах
- •7.2. Импульсный преобразователь напряжения на микроконтроллере фирмы Microchip
- •Основные технические характеристики
- •Номинальное выходное напряжение каналов, в 12 или 5
- •7.3. Автомобилный релейный импульсный источник питания на микроконтроллере фирмы Microchip
- •7.4. Источник питания проблескового фонаря на светодиодах
- •7.5. Зарядное устройство на основе микроконтроллера ht46r47 фирмы Holtek Semiconductor
- •Особенности зарядки аккумуляторов
- •Защита надо связать гл.2 со схемой медленного пуска
- •Глава 2. Схемы простейших устройств защиты и зарядки
- •2.1. Стабилизатор напряжения на микросхеме кр142ен19 с защитой
- •Емкостной – с– фильтр
- •Трехфазная мостовая схема выпрямителя
- •Шестифазная однотактная схема выпрямителя
- •На число, месяц, год
- •6.Наумов н.Н.
- •9. Алексеев г/б
- •III. Сведения по выплатам (в разрезе оказываемых услуг):
- •2.За предыдущие годы долг капо составляет:
- •Расход:
- •Спасибо !!! конец - январь -2013 –год
- •Где эти деньги (684000 руб.) я не знаю
- •Конец гр.05. Наихудший случай:
- •После чего общая сумма оплаты за обучение в 2012 году должна быть равна:
- •А с учетом остатка за 2011 г., равного 460777 (517559 руб.), получим:
- •Уважаемая галина ивановна !
- •Сведения о студентах
4.3. Выходные цепи
Рассмотрим особенности выходных каналов ИП. Способ получения выходных напряжений блока может быть различным для разных схем. При этом напряжения основных (сильноточных) каналов +5 В и +12 В всегда получаются одним и тем же способом во всех схемах (рис. 82). Способ этот заключается в выпрямлении и сглаживании импульсных ЭДС со вторичных обмоток импульсного силового трансформатора. В этом случае выпрямление во всех двухтактных схемах осуществляется по двухполупериодной схеме со средней точкой. Этим обеспечивается симметричный режим перемагничивания сердечника импульсного трансформатора, т.к. через вторичные обмотки протекает только переменный ток и, следовательно, отсутствует вынужденное подмагничивание сердечника, неизбежное в однополупериодных схемах выпрямления, где ток протекает через вторичную обмотку трансформатора только в одном направлении.
Рис. 82
Рассмотрим работу вторичной стороны на примере схемы ИП (рис. 84).
Поскольку все четыре выходных канала схемотехнически реализованы примерно одинаково, то ограничимся подробным рассмотрением работы только одного из них (канал +12В).
Когда через первичную обмотку 1-2 силового трансформатора ТV протекает линейно нарастающий ток в направлении от вывода 1 к выводу 2, на вторичных обмотках ТV действуют ЭДС постоянного уровня. Полярность этих ЭДС такова, что на выводе 3 присутствует положительный потенциал ЭДС относительно корпуса.
На выводе 7 этот потенциал будет отрицательным. Поэтому протекает линейно нарастающий ток по цепи: 3ТV - верхний диод сборки VD2 - обмотка W2 дросселя L1 - дроссель L2 - конденсатор С21 - корпус - 5ТV.
Нижний диод сборки VD2 на этом интервале закрыт отрицательным напряжением на аноде, и ток через него не протекает.
Помимо подзарядки конденсатора С21 происходит передача энергии на выход канала (поддерживается ток нагрузки). На этом же интервале времени в сердечниках дросселей L1, L2 запасается магнитная энергия.
Далее ток через первичную обмотку силового трансформатора прерывается как результат закрывания силового транзистора (на схеме не показан). ЭДС на вторичных обмотках исчезают. Длится «мертвая зона». На этом интервале энергия, запасенная в дросселях L1, L2 передается в конденсатор С21 и в нагрузку. При исчезновении ЭДС на вторичных обмотках в дросселя наводится ЭДС самоиндукции, стремящаяся поддержать ток прежнего направления. Поэтому ток подзарядки С21 во время «мертвой зоны» протекает по цепи: правый (по схеме) вывод L2 - С21 - корпус - 5-3 и 5-7 ТV - диоды VD2 - левый (по схеме) вывод W2 L1.
Ток этот – линейно спадающий во времени. Далее открывается второй силовой транзистор (на схеме не показан) и через первичную обмотку ТV начинает протекать линейно нарастающий ток противоположного предыдущему случаю направления (от вывода 2 к выводу 1). Поэтому полярность ЭДС на вторичных обмотках VТ также будет противоположной: на выводе 7 – положительный потенциал относительно корпуса, а на выводе 3 – отрицательный.
Поэтому проводящим элементом на этом интервале будет теперь нижний диод сборки VD2, а верхний ее диод будет закрыт. Ток через обмотку W2, L1 и L2 опять будет линейно нарастающим и подзарядит конденсатор С21, а также поддержит ток нагрузки: 7 ТV - нижний диод VD2 - W2L1 - L2 - C21 - корпус - 5ТV.
В сердечниках L1, L2 вновь накапливается магнитная энергия, которая опять передается в конденсатор С21 и нагрузку на интервале следующей за этим «мертвой зоны». Далее процессы повторяются. При этом разрядка конденсатора С21 на нагрузку происходит в течение всего периода работы.
Становится ясно, что силовая часть представляет собой комбинацию из двух прямоходовых преобразователей, образующих двухтактную схему.
В качестве выпрямительных диодов в выходных цепях используются импульсные (высокочастотные) силовые диоды, которые кроме статических параметров, определяемых по вольтамперным характеристикам, характеризуются параметрами, определяющими их инерционные свойства при переключении с прямого тока на обратное напряжение.
При смене полярности входного напряжения из-за инерционности процесса рассасывания избыточных носителей заряда, накопленных в базе за время открытого состояния, диод восстанавливает свое обратное сопротивление не мгновенно, а через некоторое время восстановления tвoc (trr). В течение этого времени диод остается открытым, и через него протекает обратный ток Iобр, значение которого зависит от характера нагрузки выпрямителя и длительности фронта входного переменного напряжения.
При этом пока диод не восстановит свое обратное сопротивление, импульсный трансформатор работает в режиме короткого замыкания по выходу, что неблагоприятно сказывается на режиме работы силовых транзисторов и может привести к выходу их из строя, т.к. короткое замыкание на выходе ИП приводит к резкому броску коллекторного тока через силовой транзистор в момент его переключения. Поэтому применяемые в качестве выпрямительных элементов диоды должны обладать минимально возможным временем восстановления, которое является одним из основных параметров выпрямительных диодов и характеризует их инерционные свойства.
Для уменьшения динамических коммутационных потерь и устранения режима короткого замыкания при переключении в самом сильноточном канале +5В, где эти потери наиболее значимы, качестве выпрямительных элементов используют диодную сборку (полумост) из двух диодов Шоттки. Это обусловлено следующими соображениями: диод Шоттки практически безинерционный прибор с почти мгновенным восстановлением обратного сопротивления (время обратного восстановления порядка 0,1мкс) при коммутации прямое падение напряжение на диоде Шоттки равно примерно 0,4 В, в отличие от кремниевого диода с прямым падением напряжения в 0,8 - 1,2 В, что при токе нагрузки 15 - 20 А дает дополнительный выигрыш в КПД ИП.
Кроме того, в схемах с самовозбуждением выпрямленное импульсное напряжение с выхода диодного полумоста канала +12 В используется для получения вспомогательного напряжения питания управляющей микросхемы и согласующего каскада. Это напряжение было обозначено ранее как Upom. Для получения этого напряжения к выходу полумоста через развязывающий диод подключается сглаживающая емкость, напряжение с которой обычно через дополнительный Г-образный RC-фильтр развязки подается на шину Upom, с которой и запитывается по выводу 12 управляющая микросхема, а также базовые делители транзисторов согласующего каскада и коллекторы этих транзисторов.
К шине выходного напряжения +5 В во всех рассматриваемых схемах ИП подключается резистивный делитель, выполняющий функцию измерительного элемента в цепи обратной связи в контуре стабилизации выходных напряжений.
Кроме того, к выходной шине подключены разрядные резисторы. Их назначение – быстрая разрядка всех выходных конденсаторов, а также конденсаторов различных вспомогательных схем после выключения ИВП из сети с целью привести всю схему ИП в исходное состояние перед последующим включением, т. к. для нормального выхода ИП на режим, все конденсаторы его схемы к моменту включения в питающую сеть должны быть полностью разряжены.
Токи, протекающие через эти резисторы в процессе работы ИВЭП, незначительны по сравнению с токами нагрузок. Поэтому можно считать, что в процессе работы эти резисторы не влияют на работу схемы ИП.