
- •Основы Теории Информации Гордеев э.Н.
- •Содержание
- •1Введение
- •1.1Предмет курса
- •1.2Основная цель курса
- •1.3Теория информации и смежные дисциплины
- •1.4Подходы к определению понятия информация.
- •2Алфавит. Слово. Язык. Информация.
- •3Информация и алгоритм.
- •3.1Задачи, алгоритмы
- •3.1.1Задача
- •3.2Алгоритм
- •3.2.1Нормальные алгорифмы Маркова (нам).
- •3.2.2Машины Тьюринга
- •4Кодирование информации. Количество информации. Сжатие информации.
- •4.1Кодирование информации.
- •4.1.1Примеры кодировок
- •4.1.2Свойства кодировок
- •4.2Наиболее распространенные способы кодирования и их свойства. Алгоритмы кодирования.
- •4.2.1Кодирование слов и поиск минимального кода
- •4.2.2Признаковое кодирование.
- •4.2.3Признаковое кодирование и проблема распознавания.
- •4.2.4Сериальное кодирование
- •4.2.5Алфавитное кодирование.
- •4.2.5.1Неравенство Крафта.
- •4.2.5.2Префиксные коды.
- •4.2.6Кодирование натурального ряда.
- •4.2.6.1Код Элайеса.
- •4.2.6.2Код Левенштейна
- •5Количество информации. Энтропия.
- •5.1.1Энтропия по Хартли.
- •5.1.2Энтропия по Шеннону.
- •5.1.2.1Математическая модель: алфавитное кодирование случайного источника.
- •5.1.2.2Энтропия по Шеннону
- •5.1.2.3Энтропия по Шеннону и энтропия по Хартли.
- •6Теорема Шеннона
- •7Свойства энтропии.
- •8Алгоритмы кодирования
- •8.1Алгоритм Шеннона (Фано)
- •8.2Алгоритм Хаффмана
- •8.3Блочное кодирование
- •8.4Алгоритм арифметического кодирования
- •8.5Код Элайеса
- •8.6Код Левенштейна
- •9Блочное кодирование и теорема Шеннона.
- •10Канал с шумом.
- •10.1Модели каналов.
- •10.2Передача информации по двоичному симметричному каналу с шумом
- •10.2.1Схема и принципы кодирования.
- •10.3Корректирующие способности кодов. Границы мощности.
- •10.4Теорема Шеннона для канала с шумом.
- •10.4.1Факты из теории вероятности.
- •10.4.2Схема кодирования и декодирования. Вспомогательные утверждения.
- •10.4.3Вероятностное доказательство теоремы.
- •10.4.4Комбинаторное доказательство теоремы.
- •10.5Линейные коды
- •10.5.1Пример. Код Хемминга.
- •10.5.2Замечание. Совершенные коды и теорема Шеннона.
- •10.5.3Бчх – коды
- •10.6Спектр кода. Эквидистантные коды
- •11Рекомендованная литература
4Кодирование информации. Количество информации. Сжатие информации.
Итак, условие задачи – это информация, текст алгоритма – информация, результат работы алгоритма – информация и т.п. Еще раз хочу подчеркнуть, что нет алгоритма без информации и наоборот.
Сначала поясним, что будет пониматься под количеством информации, кодированием информации и сжатием информации.
Будем считать, что информация создается и используется человеком (субъектом).
Как мы уже говорили, при математическом подходе к информации предполагается справедливость следующего тезиса.
Тезис. Любая информация может быть представлена словом в конечном алфавите.
Очевидно, что множество слов может быть представлено одним словом. (Например, с помощью операции конкатенации.)
Опр. Конкатенация слов и получается путем последовательной записи символов одного слова вслед за символами другого, т.е.
Поэтому понятия кодирование информации, количества информации и сжатие информации могут относиться как к одному слову, так и к множеству слов.
Кодирование информации – это создание слова α в алфавите А.
Количество информации – это некоторая количественная характеристика H(α), сопоставляемая слову (множеству слов) α.
Сжатие информации - это преобразование одного слова α в другое слово β. Поэтому сжатие – это преобразование информации, которое можно задать с помощью некоторого отображения φ. Таким образом, β=φ(α).
Вообще говоря, термин сжатие информации тесно связан с понятием количества информации. Сжатие происходит тогда, когда количество информации, приходящейся на один символ исходного слова α меньше, чем количество информации, приходящейся на один символ слова β=φ (α).
4.1Кодирование информации.
Понятие кодирование применительно к информации будет рассматриваться в двух аспектах:
Создание самого Информационного объекта. То есть нанесение на материальный носитель информации о некотором объекте в виде слова α в алфавите А. В этом случае данное слово будет рассматриваться как код объекта. То есть код объекта – это символ интерпретации субъектом информации об объекте. (Назовем это кодированием в широком аспекте.)
Преобразование информации. Вначале информация была представлена словом α, а затем эта же информация представляется словом β, которое получено из α в результате некоторого преобразования φ. Тогда слово β=φ(α) называется кодом слова α. (Назовем это просто кодированием.)
Код, Кодирование
Преобразование одних слов в другие
слова.
Код объекта – символ интерпретации
субъектом информации объекта.
Первый аспект возникает тогда, например, в программировании, когда нужно представить объект в виде набора данных. Эта проблема возникает как для математических объектов: числа, фигуры, группы, поля, алгоритмы и т.п., так и для объектов из других областей знаний: месторождения в геологии, болезни в медицине, каталоги в промышленности и т.п. Здесь результатом кодирования является слово, в то время как исходный объект кодирования либо представляет собой формализованный математический объект, либо вообще не формализован.
В Теории информации, как математической дисциплине, под кодированием понимался чаще всего второй случай. Здесь исходный и конечный объект кодирования – слова в алфавите.
Часто бывает, что кодирование (создание Информационного объекта) - это итерационный процесс. То есть, сначала есть объект B , есть информация о нём I(B), потом есть информация об информации о нём I(I(B)) и т.д. В результате можно получить некоторую структуру данных, состоящую из всех таких информаций.
Количество символов в слове α будем называть длиной слова α и обозначать через l(α).