
- •01Краткий курс: Основные понятия теории вероятностей и математической статистики.
- •6. Основные понятия теории вероятности.
- •Случайные величины и законы их распределения.
- •Числовые характеристики случайных величин.
- •Нормальный закон распределения.
- •Основные понятия математической статистики.
- •Точечная оценка случайной величины.
- •Интервальные оценки случайных величин.
- •Проверка статистических гипотез.
- •Параметрические и непараметрические критерии различия.
- •18. Сравнение двух статистических совокупностей. Критерий Стьюдента. Критерий Фишера.
- •Корреляционная зависимость. Коэффициент корреляции и его свойства. Уравнение регрессии.
- •20. Информация. Количество информации. Единицы количества информации.
- •21. Информационная энтропия. Формула Хартли и Шеннона.
- •22. Общая схема съема, передачи и регистрации информации.
- •23. Понятие о сенсорных системах. Абсолютные и дифференциальные пороги.
- •24. Элементы психофизики. Связь между изменением интенсивности ощущения с изменением силы раздражителя (законы Вебера, Вебера – Фехнера и Стивенса).
- •Предмет и метод биофизики. Связь биофизики с другими естественными науками.
- •Значение и особенности термодинамического метода изучения биологических систем. Первое начало термодинамики.
- •27.Обратимые и необратимые процессы. Энтропия. Термодинамическое толкование энтропии.
- •28. Статистическое толкование энтропии. Второе начало термодинамики.
- •Организм как открытая система. Понятие продукции и притока энтропии в открытых системах.
- •Понятие о стационарном состоянии. Критерий стационарности. Теорема Пригожина.
- •Постоянство внутренней среды организма.
- •Сравнение стационарного состояния и термодинамического равновесия.
- •Аутостабилизация стационарных систем. Принцип Ле – Шателье – Бауэра.
- •36. Биореология.
- •Вязкость жидкости. Уравнение Ньютона.
- •Ньютоновские и неньютоновские жидкости.
- •Реологические свойства крови, плазмы и сыворотки крови.
- •Методы измерения вязкости крови.
- •Физические основы гемодинамики.
- •Общие закономерности движения крови по кровеносному руслу.
- •Гидравлическое сопротивление сосудов. Гидравлическое сопротивление разветвлённых участков.
- •Зависимость давления и скорости течения крови от участка сосудистого русла.
- •Ламинарное и турбулентное течение. Число Рейнольдса.
- •Физические основы клинического метода измерения давления крови.
- •Пульсовые волны. Скорость распространения пульсовой волны.
- •Механические и электрические модели кровообращения.
- •Работа и мощность сердца. ( Ремизов а.Н. Стр.210-211)
- •Основные положения гемодинамики.
- •Затухающие колебания. Уравнение затухающих колебаний.
- •Коэффициент затухания. Декремент и логарифмический декремент затухания.
- •Акустика. Физические характеристики звука. Шкала интенсивности.
- •Характеристики слухового ощущения. Пороги слышимости.
- •Закон Вебера – Фехнера. Шкала громкости. Единицы измерения громкости.
- •Физика слуха.
- •Ультразвук. Основные свойства и особенности распространения. Действие ультразвука на биологические ткани. Ультразвук в диагностике.
- •63. Инфразвук. Физическая характеристика инфразвука. Биофизическое действие ультразвука. ((Рем.,стр168)
- •Электропроводность биологических тканей. Физические основы реографии. Импеданс биологических тканей.(Губанов: с.217-230)
- •Физические процессы в биообъектах под действием постоянных и переменных электрических полей.
- •Общая характеристика медицинской электронной аппаратуры.
- •Надежность и электробезопасность. Использование в диагностике и физиотерапии.
- •Электроды. Датчики. Их основные характеристики и требования к ним.
- •Структура и функции биологических мембран.
- •Методы исследования мембран. Рентгеноструктурный анализ. Электронная микроскопия.
- •Пассивный транспорт веществ через мембрану. Уравнение Теорелла. Уравнение Фика.
- •Простая и облегченная диффузия.
- •Электродиффузия. Уравнение Нернста – Планка.
- •Активный транспорт веществ через мембрану. Понятие о натрий – калиевом насосе.
- •Биопотенциалы.
- •Потенциал покоя. Природа потенциала покоя.
- •Уравнение Гольдмана – Ходжкина – Хаксли.
- •Потенциал действия. Генерация потенциала действия.
- •Распространение потенциала действия. Понятие о локальных токах. Кабельная теория распространения потенциала действия.
- •Особенности распространения потенциала действия в мякотных и безмякотных волокнах.
- •Биофизические принципы исследования электрических полей в организме. Понятие о токовом диполе.
- •Дипольный эквивалентный генератор сердца.
- •Генез электрокардиограммы. Особенности проведения возбуждения по миокарду.
- •Теория отведения Эйнтховена. Электрокардиография основывается на теории отведений Эйнтховена, которая позволяет судить о потенциалах сердца по потенциалам, снятым с поверхности тела.
- •Векторэлектрокардиография.
- •86. Интерференция света.
- •Интерферометры и их применение. Понятие об интерференционном микроскопе.
- •Дифракция света. Принцип Гюйгенса – Френеля.
- •Дифракционная решетка. Дифракционный спектр.
- •Понятие о голографии и ее применение в медицине.(Ремезов, с.435 - 438).
- •Поляризация света. Поляриметрия.(Ремезов, с.439 - 447).
- •92. Поглощение света. Закон Бугера-Бера
- •93. Поглощение света растворами. Закон Бугера-Бера-Бера. Концентрационная колориметрия. ("кк").
- •94. Фотобиологические процессы. Основые правила фотохимии.
92. Поглощение света. Закон Бугера-Бера
Поглощением света называют ослабление светового потока (интенсивности света) при прохождении его через какое-либо вещество вследствие превращения в другие виды энергии (обычно в тепло).
I=I0 e-kl – закон Бугера.
k – натуральный показатель поглощения (зависит от свойств поглощающей среды и не зависит от интенсивности света);
I0 –интенсивность падающего света;
I – интенсивность света, после прохождения его через слой вещества толщиной l.
Натуральный показатель поглощения зависит от длины волны света, поэтому к этому показателю добавляется индекс и формула запишется для монохроматического света:
I=I0 e-kl.
Поглощение света обусловлено взаимодействием фотонов с молекулами вещества, поэтому вводятся дополнительные характеристики:
1. – эффективное сечение поглощения молекулы (некая площадь, при попадании в которую происходит захват фотона молекулой);
n – концентрация молекул.
Таким образом: I =I0 e -nl
93. Поглощение света растворами. Закон Бугера-Бера-Бера. Концентрационная колориметрия. ("кк").
Поток световых квантов, проходя через раствор ослабляется. Это вызвано взаимодействием фотонов с веществом (взаимодействием фотонов с растворителем пренебрегаем). Ослабление интенсивности света dI зависит от количества столкновений квантов с молекулами вещества. При этом концентрацию вещества удобно выражать через С-молярную : n = C NA, где NA – число Авогадро.
n = NA C = C, где – натуральный молярный показатель поглощения. Его физический смысл – суммарное эффективное сечение поглощения всех молекул одного моля растворённого вещества.
I = I0 e -lС – это закон БУГЕРА-ЛАМБЕРТА-БЕРА показывает, что интенсивность прошедшего света зависит от , l, С: интенсивность светового потока, проходящего через вещество, экспоненциально уменьшается в зависимости от длины оптического пути и концентрации вещества в образце.
"КК" - ФОТОМЕТРИЧЕСКИЙ способ определения концентрации веществ основан на законе БУГЕРА-ЛАМБЕРТА-БЕРА : E = ln(I0/ I) = lС. Отсюда с = E/l - путем измерения световых потоков (до I0 и после I прохождения света через раствор), определении коэффициента пропускания ( =I/I0) и оптической плотности: D = lg (1/)
94. Фотобиологические процессы. Основые правила фотохимии.
Согласно основному закону фотохимии, который является следствием закона сохранения энергии, фотохимическое действие может оказывать только тот свет, который поглощается данной системой. Поэтому для рассмотрения энергетики фотобиологического процесса важно знать поглощательную способность системы. Это позволяет определить закон БУГЕРА-ЛАМБЕРТА-БЕРА