
- •01Краткий курс: Основные понятия теории вероятностей и математической статистики.
- •6. Основные понятия теории вероятности.
- •Случайные величины и законы их распределения.
- •Числовые характеристики случайных величин.
- •Нормальный закон распределения.
- •Основные понятия математической статистики.
- •Точечная оценка случайной величины.
- •Интервальные оценки случайных величин.
- •Проверка статистических гипотез.
- •Параметрические и непараметрические критерии различия.
- •18. Сравнение двух статистических совокупностей. Критерий Стьюдента. Критерий Фишера.
- •Корреляционная зависимость. Коэффициент корреляции и его свойства. Уравнение регрессии.
- •20. Информация. Количество информации. Единицы количества информации.
- •21. Информационная энтропия. Формула Хартли и Шеннона.
- •22. Общая схема съема, передачи и регистрации информации.
- •23. Понятие о сенсорных системах. Абсолютные и дифференциальные пороги.
- •24. Элементы психофизики. Связь между изменением интенсивности ощущения с изменением силы раздражителя (законы Вебера, Вебера – Фехнера и Стивенса).
- •Предмет и метод биофизики. Связь биофизики с другими естественными науками.
- •Значение и особенности термодинамического метода изучения биологических систем. Первое начало термодинамики.
- •27.Обратимые и необратимые процессы. Энтропия. Термодинамическое толкование энтропии.
- •28. Статистическое толкование энтропии. Второе начало термодинамики.
- •Организм как открытая система. Понятие продукции и притока энтропии в открытых системах.
- •Понятие о стационарном состоянии. Критерий стационарности. Теорема Пригожина.
- •Постоянство внутренней среды организма.
- •Сравнение стационарного состояния и термодинамического равновесия.
- •Аутостабилизация стационарных систем. Принцип Ле – Шателье – Бауэра.
- •36. Биореология.
- •Вязкость жидкости. Уравнение Ньютона.
- •Ньютоновские и неньютоновские жидкости.
- •Реологические свойства крови, плазмы и сыворотки крови.
- •Методы измерения вязкости крови.
- •Физические основы гемодинамики.
- •Общие закономерности движения крови по кровеносному руслу.
- •Гидравлическое сопротивление сосудов. Гидравлическое сопротивление разветвлённых участков.
- •Зависимость давления и скорости течения крови от участка сосудистого русла.
- •Ламинарное и турбулентное течение. Число Рейнольдса.
- •Физические основы клинического метода измерения давления крови.
- •Пульсовые волны. Скорость распространения пульсовой волны.
- •Механические и электрические модели кровообращения.
- •Работа и мощность сердца. ( Ремизов а.Н. Стр.210-211)
- •Основные положения гемодинамики.
- •Затухающие колебания. Уравнение затухающих колебаний.
- •Коэффициент затухания. Декремент и логарифмический декремент затухания.
- •Акустика. Физические характеристики звука. Шкала интенсивности.
- •Характеристики слухового ощущения. Пороги слышимости.
- •Закон Вебера – Фехнера. Шкала громкости. Единицы измерения громкости.
- •Физика слуха.
- •Ультразвук. Основные свойства и особенности распространения. Действие ультразвука на биологические ткани. Ультразвук в диагностике.
- •63. Инфразвук. Физическая характеристика инфразвука. Биофизическое действие ультразвука. ((Рем.,стр168)
- •Электропроводность биологических тканей. Физические основы реографии. Импеданс биологических тканей.(Губанов: с.217-230)
- •Физические процессы в биообъектах под действием постоянных и переменных электрических полей.
- •Общая характеристика медицинской электронной аппаратуры.
- •Надежность и электробезопасность. Использование в диагностике и физиотерапии.
- •Электроды. Датчики. Их основные характеристики и требования к ним.
- •Структура и функции биологических мембран.
- •Методы исследования мембран. Рентгеноструктурный анализ. Электронная микроскопия.
- •Пассивный транспорт веществ через мембрану. Уравнение Теорелла. Уравнение Фика.
- •Простая и облегченная диффузия.
- •Электродиффузия. Уравнение Нернста – Планка.
- •Активный транспорт веществ через мембрану. Понятие о натрий – калиевом насосе.
- •Биопотенциалы.
- •Потенциал покоя. Природа потенциала покоя.
- •Уравнение Гольдмана – Ходжкина – Хаксли.
- •Потенциал действия. Генерация потенциала действия.
- •Распространение потенциала действия. Понятие о локальных токах. Кабельная теория распространения потенциала действия.
- •Особенности распространения потенциала действия в мякотных и безмякотных волокнах.
- •Биофизические принципы исследования электрических полей в организме. Понятие о токовом диполе.
- •Дипольный эквивалентный генератор сердца.
- •Генез электрокардиограммы. Особенности проведения возбуждения по миокарду.
- •Теория отведения Эйнтховена. Электрокардиография основывается на теории отведений Эйнтховена, которая позволяет судить о потенциалах сердца по потенциалам, снятым с поверхности тела.
- •Векторэлектрокардиография.
- •86. Интерференция света.
- •Интерферометры и их применение. Понятие об интерференционном микроскопе.
- •Дифракция света. Принцип Гюйгенса – Френеля.
- •Дифракционная решетка. Дифракционный спектр.
- •Понятие о голографии и ее применение в медицине.(Ремезов, с.435 - 438).
- •Поляризация света. Поляриметрия.(Ремезов, с.439 - 447).
- •92. Поглощение света. Закон Бугера-Бера
- •93. Поглощение света растворами. Закон Бугера-Бера-Бера. Концентрационная колориметрия. ("кк").
- •94. Фотобиологические процессы. Основые правила фотохимии.
Ультразвук. Основные свойства и особенности распространения. Действие ультразвука на биологические ткани. Ультразвук в диагностике.
Ультразвук - механические колебания и волны, частоты которых более 20 кГц. Верхний предел ультразвуковых частот - 109 – 1010 Гц.
Для генерирования ультразвука применяют излучатели, основанные на обратном пьезоэффекте, который заключается в механической деформации тел под действием электрического поля. Для регистрации ультразвука может быть использован прямой пьезоэффект, когда под действием механической деформации тела возникает электрическое поле.
Применение ультразвука в медицине связано с его особенностями распространения и характерными свойствами. Отражение ультразвуковых волн (УЗ) на границе двух сред зависит от соотношения их волновых сопротивлений. Так, УЗ хорошо отражается на границах мышца – надкостница – кость, на поверхности полых органов и т.д. Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т.п. (УЗ – локация). При УЗ – локации используют как непрерывное, так и импульсное излучения. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и отраженной волн от границы раздела. Во втором случае наблюдается отраженный импульс и измеряют время распространения ультразвука до исследуемого объекта и обратно. Зная скорость распространения ультразвука, определяют глубину залегания объекта.
Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому, если УЗ - излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет отражаться из-за тонкого слоя воздуха между излучателем и биологическим объектом. Чтобы исключить воздушный слой, поверхность УЗ –излучателя покрывают слоем масла.
Скорость распространения УЗ и их поглощение существенно зависят от состояния среды на этом основано использование ультразвука для изучения молекулярных свойств вещества. Исследования такого рода являются предметом молекулярной акустики.
При распространении ультразвука в среде возникают зоны сжатия и разряжения, которые приводят к образованию разрывов жидкости – кавитации.
Кавитации существуют недолго и быстро захлопываются, при этом в небольших объемах выделяется значительная энергия, что приводит к разогреванию вещества, а также ионизации и диссоциации молекул.
Применение ультразвука в медицине можно разбить на два основных направления: диагностику и терапию.
К первому направлению относятся локационные методы с использованием главным образом импульсного излучения. Это эхоэнцефалография, ультразвуковая кардиография, в офтальмологии – для определения размеров глазных сред.
Основное применение ультразвука в терапии основано на механическим и тепловым действием на ткани. При операциях ультразвук применяют как ультразвуковой скальпель.
63. Инфразвук. Физическая характеристика инфразвука. Биофизическое действие ультразвука. ((Рем.,стр168)
Инфразвук – механические колебания с частотой меньше 20 Гц. Человеческое ухо не способно воспринимать такие колебания.
Источники инфразвука могут быть природными (грозовые разряды, землетрясения) и искусственными (взрывы, насосы).
Свойства: слабо поглощается (поэтому распространяется на большие расстояния), хорошо дифрагирует ( т.е. огибает препятствия),
Биофизическое действие связано с резонансными явлениями, которые возникают в некоторых системах организма из-за близости собственных частот к частоте инфразвуковых колебаний. Частота собственных колебаний тала человека в положении лёжа – 3-4 Гц, стоя – 5-12 Гц, грудной клетки и отдельных органов брюшной полости – 3-8 Гц.