Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Контрольная работа по Динамике океана.doc
Скачиваний:
6
Добавлен:
01.04.2025
Размер:
44.51 Mб
Скачать

Контрольная работа №2

1.Основные положения и результаты теории гравитационных волн малой амплитуды. Длинные и короткие волны.

Гравитацио́нные во́лны на воде́ — разновидность волн на воде, при которых сила, возвращающая деформированную поверхность воды к состоянию равновесия, есть просто сила тяжести, т.е. перепад высот гребня и впадины в гравитационном поле.

Гравитационные волны на воде — это нелинейные волны. Точный математический анализ возможен лишь в линеаризованном приближении и в отсутствие турбулентности. Кроме того, обычно речь идёт про волны на поверхности идеальной жидкости. Результаты точного решения в этом случае описаны ниже.

Гравитационные волны на воде не поперечны и не продольны. При колебании частицы жидкости описывают некоторые кривые, т.е. перемещаются как в направлении движения, так и поперёк него. В линеаризованном приближении эти траектории имеют вид окружностей. Это приводит к тому, что профиль волн не синусоидальный, а имеет характерные заострённые гребни и более пологие провалы.

Нелинейные эффекты сказываются, когда амплитуда волны становится сравнимой с её длиной. Одним из характерных эффектов в этом режиме является появление изломов на вершинах волн. Кроме того, появляется возможность опрокидывания волны. Эти эффекты пока не поддаются точному аналитическому расчёту.

Если длина волны сравнима с глубиной бассейна H, то закон дисперсии в этом случае имеет вид:

До сих пор не понят механизм формирования и устойчивости так называемых волн-убийц - внезапных волн экстремальной амплитуды.

Приближение волн на мелкой воде справедливо в тех случаях, когда длина волны существенно превышает глубину водоёма длинные волны). Классический пример таких волн — это цунами в океане: до тех пор, пока цунами не вышла на берег, она представляет собой волну амплитудой порядка нескольких метров и длиной в десятки и сотни километров, что, конечно же, существенно больше глубины океана.

Закон дисперсии и скорости волны в этом случае имеет вид:

Этот закон дисперсии приводит к некоторым явлениям, которые можно легко заметить на морском берегу.

Даже если волна в открытом море шла под углом к берегу, то при выходе на берег гребни волны имеют тенденцию разворачиваться параллельно берегу. Это связано с тем, что вблизи берега, когда глубина начинает постепенно уменьшаться, скорость волны падает. Поэтому косая волна притормаживает на подходе к берегу, разворачиваясь при этом.

За счёт аналогичного механизма при подходе к берегу уменьшается продольный размер цунами, при этом высота волны возрастает.

Приближение волны на глубокой воде справедливо, когда глубина водоёма значительно превышает длину волны (короткие волны). В этом случае для простоты рассматривают бесконечно глубокий водоём. Это обоснованно, поскольку при колебаниях поверхности реально движется не вся толща воды, а лишь приповерхностный слой глубиной порядка длины волны.

Закон дисперсии и скорости волны в этом случае имеет вид:

Из выписанного закона следует, что длинноволновые колебания будут распространяться по воде быстрее коротковолновых, что приводит к ряду интересных явлений. Например, бросив камень в воду и глядя на круги, образуемые им, можно заметить, что граница волн расширяется не равномерно, а примерно равноускоренно. При этом чем больше граница, чем более длинноволновыми колебаниями она формируется. Другим красивым следствием выписанного закона дисперсии являются корабельные волны.