- •Техническая механика
- •Раздел III. Детали машин и основы
- •Глава 1. Основы проектирования и надёжной
- •Глава 2. Соединение деталей машин. . . . . . . . . . . . . ……….176
- •Глава 3. Механические передачи движения. . . . . . 189
- •Глава 4. Валы, оси и муфты.............................................................217
- •Глава 5. Опоры осей и валов. . . . . . . . . . . . . . . . . . . . . . . ……..225
- •Глава 6. Индивидуальные задания по основам конструирования и деталям машин. . . . . . . . . . ……………230
- •Введение
- •Раздел I. Теоретическая механика.
- •Часть 1. Статика.
- •Момент силы относительно точки
- •Центр параллельных сил.
- •Центр тяжести тел.
- •Часть II. Кинематика.
- •Часть III. Динамика. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Движение материальной точки. Метод кинетостатики.
- •Свободная и несвободная точки.
- •Сила инерции
- •Работа и мощность.
- •Коэффициент полезного действия.
- •Мощность.
- •Раздел II. Основы сопротивления материалов
- •Глава 1. Предмет «Сопротивление материалов»
- •Объект курса
- •Внешние силы
- •Основные понятия и гипотезы (допущения)
- •Внутренние силы и их определение. Метод сечений
- •Эпюры внутренних усилий
- •Понятие о напряжении и напряженном состоянии
- •Понятие о деформации тела и о деформации физических точек
- •Глава 2. Растяжение, сжатие бруса
- •Напряжения и деформации при растяжении и сжатии. Закон Гука
- •Потенциальная энергия деформации
- •Анализ напряженного состояния при растяжении (сжатии)
- •Статически определимые и статически неопределимые задачи при растяжении и сжатии
- •Диаграмма растяжения
- •2.6. Диаграмма сжатия
- •2.7. Расчеты на прочность при растяжении (сжатии)
- •Примеры решения задач
- •Глава 3. Сдвиг и кручение стержней
- •3.1. Понятие о чистом сдвиге. Напряжения и деформации при сдвиге. Закон Гука
- •Практический расчет соединений работающих на сдвиг
- •Кручение бруса с круглым поперечным сечением. Напряжение в брусе круглого поперечного сечения. Условия прочности. Определение угла закручивания. Условие прочности
- •Кручение бруса прямоугольного поперечного сечения
- •Потенциальная энергия бруса при кручении
- •Кручение бруса круглого поперечного сечения за пределом упругости
- •Примеры решения задач.
- •Глава 4. Геометрические характеристики плоских сечений
- •Основные понятия
- •Статические моменты сечения
- •Моменты инерции сечения. Зависимость между моментами инерции при параллельном переносе осей
- •Зависимость между моментами инерции сечения при повороте осей. Главные оси и главные моменты инерции
- •Примеры решения задач
- •Глава 5. Изгиб
- •5.1. Основные понятия
- •5.2. Дифференциальные зависимости между и
- •Напряжения в брусе при чистом изгибе
- •5.4. Напряжения при поперечном изгибе
- •5.5 Примеры решения задач
- •Раздел III. Детали машин и основы конструирования введение
- •Глава 1. Основы проектирования и надежной эксплуатации типовых элементов машин, приборов и аппаратов
- •1.1. Общие вопросы проектирования
- •1.2. Основные критерии, определяющие работоспособность элементов конструкций
- •1.3. Технологичность деталей механизмов. Взаимозаменяемость и стандартизация. Допуски и посадки
- •Глава 2. Соединение деталей машин
- •2.1. Заклёпочные соединения
- •2.2. Сварные соединения
- •2.3. Клеевые и паяные соединения
- •2.4. Соединения с натягом
- •2.5. Резьбовые соединения
- •2.6. Клиновые и штифтовые соединения
- •2.7. Шпоночные соединения
- •2.8. Шлицевые (зубчатые) соединения
- •Глава 3. Механические передачи движения
- •3.1. Общие сведения о передачах
- •3.2. Передачи зацеплением
- •3.3. Передачи трением
- •3.4. Основные параметры зубчатых передач
- •3.5. Расчет на прочность зубьев цилиндрических передач
- •3.6. Расчет прямозубых конических колес на контактную прочность
- •3.7. Основные методы обработки зубьев зубчатых колес
- •3.8. Сложные зубчатые передачи
- •3.9. Зубчатые редукторы
- •3.10. Червячные передачи
- •Глава 4. Валы, оси и муфты
- •4.1. Назначение, конструкция и материалы валов и осей
- •4.2. Расчет валов и осей
- •4.3. Муфты
- •Глава 5. Опоры осей и валов
- •5.1. Подшипники скольжения
- •5.2. Опоры с трением качения
- •Глава 6. Индивидуальные задания по основам конструирования и деталям машин
- •6.1. Содержание и варианты индивидуального задания (контрольной работы)
- •6.2. Алгоритм расчета и конструирования элементов привода.
- •Расчет клиноременной передачи
- •Последовательность расчета.
- •Расчет зубчатых колес редуктора Выбор материалов и термической обработки зубчатых колес
- •Выбор муфты
- •Конструктивные размеры шестерни и колеса
- •Конструирование корпусных деталей редуктора
- •Компоновка редуктора
- •Проверки долговечности подшипников
- •Проверка прочности шпоночных соединений
- •Уточненный расчет валов
- •Выбор посадок сопряженных деталей редуктора
- •Выбор смазочных материалов
- •Заключение
5.4. Напряжения при поперечном изгибе
В предыдущем параграфе мы видели, что при чистом изгибе возникают только нормальные напряжения. Соответственно внутренние силы приводятся к изгибающему моменту в сечении.
При поперечном изгибе в сечении бруса возникает не только изгибающий момент, но и перерезывающая сила. Эта сила является равнодействующей элементарных сил, лежащих в плоскости сечения (рис.5.8).
Рис. 5.8
Таким образом, при поперечном изгибе возникают не только нормальные, но и касательные напряжения. Возникновение касательных напряжений сопровождается появлением угловых деформаций . Поэтому нарушается гипотеза плоских сечений. На рис 5.9 показана типичная картина искривления поперечных сечений.
Рис. 5.9
Теоретически и экспериментально доказано, что искажение плоскости поперечных сечений заметным образом не сказывается на величине нормальных напряжений. Таким образом, нормальные напряжения при поперечном изгибе вычисляются по тем же формулам, что и при чистом изгибе
.
Тем самым гипотеза плоских сечений распространяется на поперечный изгиб.
Теперь определим приближенно величину касательных напряжений при поперечном изгибе. Выделим из бруса элемент длиной (рис. 5.10).
При
поперечном изгибе моменты, возникающие
в левом и правом сечениях элемента, не
одинаковы и отличаются на величину
.
Продольным горизонтальным сечением, проведенным на расстоянии от нейтрального слоя (рис. 5.10,б) разделим этот элемент на две части и рассмотрим условие равновесия верхней части. С правой стороны напряжения в каждой точке больше, чем с левой, т.к. изгибающий момент справа больше чем слева (рис.5.10,б).
Рис. 5.10
Равнодействующая
нормальных сил
в
левом сечении в пределах заштрихованной
площади
равна
или согласно формуле (5.8)
,
где — текущая ордината площадки (рис. 5.10,б),
— статический
момент относительно оси
части площади, расположенной выше
продольного сечения
.
Тогда
.
В правом сечении нормальная сила будет другой
.
Разность этих сил в правом и левом сечениях равна
.
Эта разность должна уравновешиваться касательными силами, возникающими в продольном сечении элемента (рис. 5.10,б и в).
В качестве приближения примем, что касательные напряжения распределены по ширине сечения равномерно.
Тогда
.
Откуда
(5.11)
Эта формула позволяет вычислять напряжения в продольных сечениях бруса. Напряжения в поперечных сечениях равны им по закону парности. Таким образом, формула позволяет вычислять касательные напряжения в любых точках по высоте поперечного сечения.
Рассмотрим распределение касательных напряжений для некоторых типов поперечных сечений.
Прямоугольное сечение (рис. 5.11).
Возьмем
произвольную точку
,
отстоящую от нейтральной оси
на расстоянии
.
Проведем через эту точку сечение
параллельно оси
;
ширина этого сечения —
.
Статический момент отсеченной (заштрихованной) части равен
;
,
Рис. 5.11
Следовательно,
.
Как известно,
.
Подставляя полученные значения в формулу (5.11), имеем
(5.12)
Формула
(5.12) показывает, что касательные
напряжения по высоте сечения изменяются
по закону квадратной параболы. При
получим
,
а при
имеем
.
Двутавровое сечение (рис. 5.12). Характерной особенностью этого сечения является резкое изменение ширины сечения при переходе от стенки двутавра к его полке. В основном поперечную силу воспринимает стенка, а на долю полок приходится небольшая величина.
Рассмотрим
произвольную точку
(рис. 5.12). Проведем через эту точку линию
параллельную оси
.
Статический момент площади верхней
отсеченной части (заштрихована на рис.
5.12) может быть найден как сумма статических
моментов площадей
и
:
.
Эта
формула справедлива, когда точка
находится в пределах вертикальной
стенки, т.е. пока величина
лежит в пределах
.
Эпюра касательных напряжений для
вертикальной стенки имеет вид, показанный
на рис. 5.12.
Рис. 5.12
.
.
