
- •Техническая механика
- •Раздел III. Детали машин и основы
- •Глава 1. Основы проектирования и надёжной
- •Глава 2. Соединение деталей машин. . . . . . . . . . . . . ……….176
- •Глава 3. Механические передачи движения. . . . . . 189
- •Глава 4. Валы, оси и муфты.............................................................217
- •Глава 5. Опоры осей и валов. . . . . . . . . . . . . . . . . . . . . . . ……..225
- •Глава 6. Индивидуальные задания по основам конструирования и деталям машин. . . . . . . . . . ……………230
- •Введение
- •Раздел I. Теоретическая механика.
- •Часть 1. Статика.
- •Момент силы относительно точки
- •Центр параллельных сил.
- •Центр тяжести тел.
- •Часть II. Кинематика.
- •Часть III. Динамика. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Движение материальной точки. Метод кинетостатики.
- •Свободная и несвободная точки.
- •Сила инерции
- •Работа и мощность.
- •Коэффициент полезного действия.
- •Мощность.
- •Раздел II. Основы сопротивления материалов
- •Глава 1. Предмет «Сопротивление материалов»
- •Объект курса
- •Внешние силы
- •Основные понятия и гипотезы (допущения)
- •Внутренние силы и их определение. Метод сечений
- •Эпюры внутренних усилий
- •Понятие о напряжении и напряженном состоянии
- •Понятие о деформации тела и о деформации физических точек
- •Глава 2. Растяжение, сжатие бруса
- •Напряжения и деформации при растяжении и сжатии. Закон Гука
- •Потенциальная энергия деформации
- •Анализ напряженного состояния при растяжении (сжатии)
- •Статически определимые и статически неопределимые задачи при растяжении и сжатии
- •Диаграмма растяжения
- •2.6. Диаграмма сжатия
- •2.7. Расчеты на прочность при растяжении (сжатии)
- •Примеры решения задач
- •Глава 3. Сдвиг и кручение стержней
- •3.1. Понятие о чистом сдвиге. Напряжения и деформации при сдвиге. Закон Гука
- •Практический расчет соединений работающих на сдвиг
- •Кручение бруса с круглым поперечным сечением. Напряжение в брусе круглого поперечного сечения. Условия прочности. Определение угла закручивания. Условие прочности
- •Кручение бруса прямоугольного поперечного сечения
- •Потенциальная энергия бруса при кручении
- •Кручение бруса круглого поперечного сечения за пределом упругости
- •Примеры решения задач.
- •Глава 4. Геометрические характеристики плоских сечений
- •Основные понятия
- •Статические моменты сечения
- •Моменты инерции сечения. Зависимость между моментами инерции при параллельном переносе осей
- •Зависимость между моментами инерции сечения при повороте осей. Главные оси и главные моменты инерции
- •Примеры решения задач
- •Глава 5. Изгиб
- •5.1. Основные понятия
- •5.2. Дифференциальные зависимости между и
- •Напряжения в брусе при чистом изгибе
- •5.4. Напряжения при поперечном изгибе
- •5.5 Примеры решения задач
- •Раздел III. Детали машин и основы конструирования введение
- •Глава 1. Основы проектирования и надежной эксплуатации типовых элементов машин, приборов и аппаратов
- •1.1. Общие вопросы проектирования
- •1.2. Основные критерии, определяющие работоспособность элементов конструкций
- •1.3. Технологичность деталей механизмов. Взаимозаменяемость и стандартизация. Допуски и посадки
- •Глава 2. Соединение деталей машин
- •2.1. Заклёпочные соединения
- •2.2. Сварные соединения
- •2.3. Клеевые и паяные соединения
- •2.4. Соединения с натягом
- •2.5. Резьбовые соединения
- •2.6. Клиновые и штифтовые соединения
- •2.7. Шпоночные соединения
- •2.8. Шлицевые (зубчатые) соединения
- •Глава 3. Механические передачи движения
- •3.1. Общие сведения о передачах
- •3.2. Передачи зацеплением
- •3.3. Передачи трением
- •3.4. Основные параметры зубчатых передач
- •3.5. Расчет на прочность зубьев цилиндрических передач
- •3.6. Расчет прямозубых конических колес на контактную прочность
- •3.7. Основные методы обработки зубьев зубчатых колес
- •3.8. Сложные зубчатые передачи
- •3.9. Зубчатые редукторы
- •3.10. Червячные передачи
- •Глава 4. Валы, оси и муфты
- •4.1. Назначение, конструкция и материалы валов и осей
- •4.2. Расчет валов и осей
- •4.3. Муфты
- •Глава 5. Опоры осей и валов
- •5.1. Подшипники скольжения
- •5.2. Опоры с трением качения
- •Глава 6. Индивидуальные задания по основам конструирования и деталям машин
- •6.1. Содержание и варианты индивидуального задания (контрольной работы)
- •6.2. Алгоритм расчета и конструирования элементов привода.
- •Расчет клиноременной передачи
- •Последовательность расчета.
- •Расчет зубчатых колес редуктора Выбор материалов и термической обработки зубчатых колес
- •Выбор муфты
- •Конструктивные размеры шестерни и колеса
- •Конструирование корпусных деталей редуктора
- •Компоновка редуктора
- •Проверки долговечности подшипников
- •Проверка прочности шпоночных соединений
- •Уточненный расчет валов
- •Выбор посадок сопряженных деталей редуктора
- •Выбор смазочных материалов
- •Заключение
Примеры решения задач.
Пример 3.
Жестко закрепленный на одном торце стальной вал сплошного ступенчато-постоянного сечения находится под действием показанныx на рис. 4.9, а скручивающих нагрузок.
Требуется построить эпюру крутящих моментов и определить значения наибольших касательных напряжений на каждом участке вала и углы поворота характерных сечений. В расчетах принять модуль упругости при сдвиге G = 0,8*105 М Па = 0,8 . 104 кН/см2.
Вычисляем значения крутящих моментов в характерных сечениях вала, начиная со свободного конца.
1. Сечение х=2м, Мк =О.
2. Сечение х= 1 м (справа), Mк =-100*1 =-100 Нм.
3. Сечение х = 1 м (слева), МК = - 100 + 400 = 300 Нм.
4. Сечение х = 0, МК = 300 Нм.
Эпюра крутящих моментов приведена на рис. 4.9, б. На первом участке крутящий момент имеет постоянное значение, а на втором участке он изменяется по линейному закону. В сечении, соответствующем границе участков, крутящий момент имеет скачок на величину сосредоточенного момента 400 Нм.
Вычисляем значения наибольших касательных напряжений на каждом участке вала и углы закручивания участков.
Первый участок (D1 = 4 см).
Второй участок (D2 = З см).
Угол закручивания второго участка вала вычислен с помощью площади эпюры крутящих моментов.
Определяем угол поворота правого торцевого сечения вала:
Торцевое сечение поворачивается по ходу часовой стрелки.
Эпюра углов закручивания вала показана на рис. 4.9, в. На первом участке углы закручивания изменяются по линейному закону, а на втором -- по квадратичному закону.
Глава 4. Геометрические характеристики плоских сечений
Основные понятия
При растяжении (сжатии) мы встречались с простейшей геометрической характеристикой поперечного сечения — площадью . При изгибе и кручении этой характеристики недостаточно.
Возьмем, к примеру, брус прямоугольного поперечного сечения с площадью , приложим к свободному концу силу (рис. 4.1)
Рис. 4.1
Расположим
его сечение по отношению к нагрузке
как показано на рис. 4.1,а,б. В зависимости
от ориентации сечения прогибы
будут разными.
Вывод: площадь поперечного сечения не может характеризовать сопротивляемость стержня изгибу. Необходимо привлекать к рассмотрению более сложные геометрические характеристики.
Статические моменты сечения
Возьмем некоторое поперечное сечение бруса (рис. 4.2)
Рис. 4.2
Свяжем
его с системой координат
и рассмотрим два следующих интеграла
(4.1)
Индекс у интеграла означает, что интегрирование ведется по всей площади сечения.
Первый
интеграл называется статическим
моментом сечения относительно оси
,
а второй статическим моментом относительно
оси
.
Размерность —
.
При
параллельном переносе осей величины
статических моментов меняются. Рассмотрим
две пары параллельных осей
и
(рис. 4.3).
Рис. 4.3
Пусть
расстояние между осями
и
равно
,
а между
и
равно
.
Дано:
.
Требуется определить
.
Очевидно,
что
Искомые статические моменты равны
Или
.
Рассмотрим подробнее, например, первое из полученных выражений
Величина
может быть как положительной, так и
отрицательной. Всегда можно подобрать
так, причем единственным образом, чтобы,
,
тогда
.
Ось, относительно которой статический
момент равен “0”, называется центральной.
Расстояние до центральной оси от некоторой произвольной равно
,
(4.2)
аналогично
.
(4.3)
Таким образом, с помощью формул (4.2), (4.3) можно найти центр тяжести любой фигуры.