- •Техническая механика
- •Раздел III. Детали машин и основы
- •Глава 1. Основы проектирования и надёжной
- •Глава 2. Соединение деталей машин. . . . . . . . . . . . . ……….176
- •Глава 3. Механические передачи движения. . . . . . 189
- •Глава 4. Валы, оси и муфты.............................................................217
- •Глава 5. Опоры осей и валов. . . . . . . . . . . . . . . . . . . . . . . ……..225
- •Глава 6. Индивидуальные задания по основам конструирования и деталям машин. . . . . . . . . . ……………230
- •Введение
- •Раздел I. Теоретическая механика.
- •Часть 1. Статика.
- •Момент силы относительно точки
- •Центр параллельных сил.
- •Центр тяжести тел.
- •Часть II. Кинематика.
- •Часть III. Динамика. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Движение материальной точки. Метод кинетостатики.
- •Свободная и несвободная точки.
- •Сила инерции
- •Работа и мощность.
- •Коэффициент полезного действия.
- •Мощность.
- •Раздел II. Основы сопротивления материалов
- •Глава 1. Предмет «Сопротивление материалов»
- •Объект курса
- •Внешние силы
- •Основные понятия и гипотезы (допущения)
- •Внутренние силы и их определение. Метод сечений
- •Эпюры внутренних усилий
- •Понятие о напряжении и напряженном состоянии
- •Понятие о деформации тела и о деформации физических точек
- •Глава 2. Растяжение, сжатие бруса
- •Напряжения и деформации при растяжении и сжатии. Закон Гука
- •Потенциальная энергия деформации
- •Анализ напряженного состояния при растяжении (сжатии)
- •Статически определимые и статически неопределимые задачи при растяжении и сжатии
- •Диаграмма растяжения
- •2.6. Диаграмма сжатия
- •2.7. Расчеты на прочность при растяжении (сжатии)
- •Примеры решения задач
- •Глава 3. Сдвиг и кручение стержней
- •3.1. Понятие о чистом сдвиге. Напряжения и деформации при сдвиге. Закон Гука
- •Практический расчет соединений работающих на сдвиг
- •Кручение бруса с круглым поперечным сечением. Напряжение в брусе круглого поперечного сечения. Условия прочности. Определение угла закручивания. Условие прочности
- •Кручение бруса прямоугольного поперечного сечения
- •Потенциальная энергия бруса при кручении
- •Кручение бруса круглого поперечного сечения за пределом упругости
- •Примеры решения задач.
- •Глава 4. Геометрические характеристики плоских сечений
- •Основные понятия
- •Статические моменты сечения
- •Моменты инерции сечения. Зависимость между моментами инерции при параллельном переносе осей
- •Зависимость между моментами инерции сечения при повороте осей. Главные оси и главные моменты инерции
- •Примеры решения задач
- •Глава 5. Изгиб
- •5.1. Основные понятия
- •5.2. Дифференциальные зависимости между и
- •Напряжения в брусе при чистом изгибе
- •5.4. Напряжения при поперечном изгибе
- •5.5 Примеры решения задач
- •Раздел III. Детали машин и основы конструирования введение
- •Глава 1. Основы проектирования и надежной эксплуатации типовых элементов машин, приборов и аппаратов
- •1.1. Общие вопросы проектирования
- •1.2. Основные критерии, определяющие работоспособность элементов конструкций
- •1.3. Технологичность деталей механизмов. Взаимозаменяемость и стандартизация. Допуски и посадки
- •Глава 2. Соединение деталей машин
- •2.1. Заклёпочные соединения
- •2.2. Сварные соединения
- •2.3. Клеевые и паяные соединения
- •2.4. Соединения с натягом
- •2.5. Резьбовые соединения
- •2.6. Клиновые и штифтовые соединения
- •2.7. Шпоночные соединения
- •2.8. Шлицевые (зубчатые) соединения
- •Глава 3. Механические передачи движения
- •3.1. Общие сведения о передачах
- •3.2. Передачи зацеплением
- •3.3. Передачи трением
- •3.4. Основные параметры зубчатых передач
- •3.5. Расчет на прочность зубьев цилиндрических передач
- •3.6. Расчет прямозубых конических колес на контактную прочность
- •3.7. Основные методы обработки зубьев зубчатых колес
- •3.8. Сложные зубчатые передачи
- •3.9. Зубчатые редукторы
- •3.10. Червячные передачи
- •Глава 4. Валы, оси и муфты
- •4.1. Назначение, конструкция и материалы валов и осей
- •4.2. Расчет валов и осей
- •4.3. Муфты
- •Глава 5. Опоры осей и валов
- •5.1. Подшипники скольжения
- •5.2. Опоры с трением качения
- •Глава 6. Индивидуальные задания по основам конструирования и деталям машин
- •6.1. Содержание и варианты индивидуального задания (контрольной работы)
- •6.2. Алгоритм расчета и конструирования элементов привода.
- •Расчет клиноременной передачи
- •Последовательность расчета.
- •Расчет зубчатых колес редуктора Выбор материалов и термической обработки зубчатых колес
- •Выбор муфты
- •Конструктивные размеры шестерни и колеса
- •Конструирование корпусных деталей редуктора
- •Компоновка редуктора
- •Проверки долговечности подшипников
- •Проверка прочности шпоночных соединений
- •Уточненный расчет валов
- •Выбор посадок сопряженных деталей редуктора
- •Выбор смазочных материалов
- •Заключение
Напряжения и деформации при растяжении и сжатии. Закон Гука
Пусть
брус растянут силами
(рис. 2.1). Площадь поперечного сечения
.
Нормальная сила в сечении
равна
(рис. 2.1,б).
Рис. 2.1
Нормальная
сила
является равнодействующей всех
внутренних сил
,
действующих на бесконечно малых
площадках
. (2.1)
Эксперименты
показывают, что если на достаточном
удалении от точки приложения сил
нанести на поверхность бруса ортогональную
сетку, то после деформации она также
останется ортогональной, только
изменятся расстояния между линиями.
Горизонтальные сечения плоские до
деформации останутся плоскими после
деформации (гипотеза плоских сечений
Бернулли). Отсюда естественно предположить,
что нормальные напряжения распределяются
равномерно по сечению
.
Из (2.1) следует
или
.
(2.2)
Понятно, что высказанное предположение о равномерном распределении внутренних сил в поперечном сечении справедливо лишь постольку, поскольку из рассмотренного исключаются особенности приложения внешних сил (рис. 2.2).
Рис. 2.2
Здесь руководствуются принципом Сен-Венана (французский ученый прошлого века). Особенности приложения внешних сил к растянутому стержню проявляются на расстояниях, не превышающих характерных размеров поперечного сечения стержня. Т.е. при изучении растяжения стержня достаточно принимать во внимание только равнодействующую внешних сил , не интересуясь особенностями приложенной нагрузки.
Приведенные рассуждения могут быть отнесены также и к особым участкам, содержащим резкое изменение геометрии ферм, отверстия и т.п. (рис. 2.3).
Рис. 2.3
Теперь рассмотрим деформации при растяжении. Под действием внешней нагрузки длина стержня увеличивается, а поперечные сечения уменьшаются (рис. 2.4). Пунктирной линией показан деформированный стержень.
Рис. 2.4
Мысленно
вырежем элемент длиною
.
Продольная линейная деформация этого
элемента
;
.
Абсолютное
увеличение стержня равно (
,
)
.
Таким образом, продольная деформация стержня при простом растяжении равна
.
(2.3)
Поперечные деформации найдем
Для изотропных материалов
.
Отношение поперечной деформации к продольной, взятое по абсолютной величине, называется коэффициентом Пуассона
.
(2.4)
Для всех изотропных материалов
.
Между напряжениями и деформациями существует в пределах упругости зависимость, называемая законом Гука:
(2.5)
Подставляя (2.3) в (2.5) имеем
или
,
(2.6)
где
—
жесткость стержня при растяжении.
Для ступенчатого стержня нагруженного несколькими силами формула для определения абсолютной деформации имеет вид:
.
(2.7)
Если и изменяется по какому-либо закону, то
,
— нормальная
площадь напряженного сечения.
(2.8)
