Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6 КСЕ.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
784.9 Кб
Скачать

6 Ксе Мир элементарных частиц Корпускулярно-волновой дуализм

Детский вопросик: Из чего состоят все тела?

Демокрит (300 г. до н.э.) писал в книге в «Малый диакосмос»:

«Начало Вселенной - атомы и пустота, все же остальное существует лишь во мнении. Миров бесчисленное множество, и они имеют начало и конец во времени. И ничто не возникает из небытия, не разрешается в небытие. И атомы бесчисленны по величине и по множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух, земля. Дело в том, что последние суть соединения некоторых атомов. Атомы же не поддаются никакому воздействию и неизменяемы вследствие твердости».

Аристотель (384-322 гг. до н.э.) считал - яблоко можно делить до бесконечности.

Ньютон писал:

«Мне кажется, что Бог вначале создал материю в виде сплошных, массивных, твердых, непроницаемых, движущихся частиц таких размеров и форм и с такими другими свойствами и в таких пропорциях к пространству, которые наилучшим образом служат той цели, для которой Он их создал, и что эти простейшие частицы, будучи твердыми, несравненно прочнее, чем любые другие тела, составленные из них; даже настолько прочны, что никогда не изнашиваются и не разбиваются на куски; никакие обычные силы не в состоянии разделить то, что Бог создал сам в первый день творенья!..»

Многие явления в нашем мире связаны с процессами, протекающими в атомах, иными словами, мы вторгаемся в явления микромира. Но в микромире законы обычной механики уже «не работают», нужно было разработать новый подход.

Частица или волна?

Корпускулярно-волновой дуализм - лежащее в основе квантовой механики положение о том, что в поведении микрообъектов проявляются как корпускулярные, так и волновые черты.

В классической (неквантовой) физике движение частиц и распространение волн – принципиально различные виды движения.

Однако опыты по вырыванию светом электронов с поверхности металлов (фотоэффект), изучение рассеяния света на электронах (эффект Комптона) и ряд других экспериментов убедительно показали, что свет — объект, имеющий, согласно классической теории, волновую природу, — ведёт себя подобно потоку частиц.

Таким образом, характерной особенностью микромира является своеобразная двойственность, дуализм корпускулярных и волновых свойств, который не может быть понят в рамках классической физики.

Почему?

  • возникновение дифракционной картины при рассеянии частиц несовместимо с представлением о движении их по траекториям.

  • пучок электронов, падающих на кристалл, даёт дифракционную картину, которую нельзя понять иначе, как на основе волновых представлений.

Дифра́кция во́лн (лат. diffractus — буквально разломанный, переломанный) — явление, которое можно рассматривать как отклонение от законов геометрической оптики при распространении волн.

Первоначально понятие дифракции относилось только к огибанию волнами препятствий, но в современном, более широком толковании, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн в неоднородных средах, а также при распространении ограниченных в пространстве волн. Дифракция тесно связана с явлением интерференции. При этом само явление дифракции зачастую трактуют как частный случай интерференции (интерференция вторичных волн).

Дифракция на двух щелях красного лазера

Распределение интенсивности света при дифракции на щели

Дифракция на двух и пяти щелях

Дифракция волн наблюдается независимо от их природы и может проявляться:

  • в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях — как расширение угла распространения волновых пучков или их отклонение в определенном направлении;

  • в разложении волн по их частотному спектру;

  • в преобразовании поляризации волн;

  • в изменении фазовой структуры волн.

Дифракционные эффекты зависят от соотношения между длиной волны и характерным размером неоднородностей среды либо неоднородностей структуры самой волны. Наиболее сильно они проявляются при размерах неоднородностей сравнимых с длиной волны. При размерах неоднородностей существенно превышающих длину волны (на 3-4 порядка и более), явлением дифракции, как правило, можно пренебречь. Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и акустических волн, а также гравитационно-капиллярных волн (волны на поверхности

История открытия:

Основы теории дифракции были заложены при изучении дифракции света в первой половине XIX века в трудах Юнга и Френеля. Среди других ученых, которые внесли значительный вклад в изучение дифракции: Гримальди, Гюйгенс, Араго, Пуассон, Гаусс, Фраунгофер, Бабине, Кирхгоф, Аббе, У. Г. Брэгг и У. Л. Брэгг, фон Лауэ, Роуланд, Зоммерфельд, Леонтович, Фок, Ван-Циттерт, Цернике (см. История оптики, дифракция света)).

Обнаружение дифракции частиц (электронов) в 1927 году (опыт Дэвиссона и Джермена) сыграло большую роль в подтверждении существования волн де Бройля и в подтверждении концепции корпускулярно-волнового дуализма (идеи двойственной природы волн и частиц). В XX и XXI веках продолжились исследования дифракции волн на сложных структурах.