
- •240801 – «Машины и аппараты химических производств»
- •1. Введение в предмет «Гидравлика». Основные свойства жидкостей и газов
- •1.1. Предмет гидравлики
- •1.2. История предмета
- •1.3. Капельные и некапельные жидкости
- •1.4. Силы, действующие в жидкости
- •1.5. Давление и его свойства
- •1.6. Основные физические свойства жидкостей
- •1.7. Вязкость. Идеальная жидкость
- •2. Основы гидростатики, динамики и кинематики жидкости
- •2.1. Тема 1. Равновесие жидкости
- •2.1.1. Дифференциальное уравнение равновесия жидкости. Поверхность равного давления
- •2.1.2. Основное уравнение гидростатики
- •2.1.3. Закон Паскаля
- •1. Сила давления на отдельный элемент поверхности.
- •2. Результирующая сила давления на стенку.
- •3. Сила давления жидкости на дно резервуара.
- •4. Сила давления на вертикальную прямоугольную стенку.
- •5. Сила давления на криволинейную поверхность.
- •6. Сила давления на цилиндрическую поверхность.
- •2.1.6. Относительный покой жидкости
- •2.1.7. Закон Архимеда
- •2.2. Тема 2. Основы кинематики и динамики жидкости и газа
- •2.2.2. Уравнение неразрывности
- •2.2.4. Интегральная формула количества движения
- •2.2.5. Дифференциальное уравнение движения невязкой жидкости (уравнение Эйлера)
- •2.2.6. Общее уравнение энергии в интегральной форме (Уравнение Бернулли для потока реальной жидкости)
- •2.2.7. Три формы представления уравнения Бернулли для потока реальной жидкости
- •2.2.9. Особенности турбулентного и ламинарного течения жидкости. Число Рейнольдса
- •2.2.10. Уравнение Бернулли для элементарной струйки невязкой сжимаемой жидкости
- •2.2.11. Уравнение Бернулли для потока вязкой сжимаемой жидкости
- •3. Основы моделирования гидромеханических процессов
- •3.1. Основы моделирования
- •3.2. Виды подобия. Масштабы моделирования
- •3.3. Критерии подобия
- •3.4. Конечно-разностная форма уравнения Навье-Стокса
- •3.5. Общая схема применения численных методов и их реализация на эвм
- •3.6. Измерительные приборы, используемые при проведении экспериментальных работ
- •1. Жидкостные манометры прямого действия.
- •3. Барометры.
- •5. Трубка Пито–Прандтля.
- •6. Расходомер Вентури.
- •7. Ротаметры.
- •4. Гидравлические сопротивления
- •4.1. Виды гидравлических сопротивлений
- •4.2 Сопротивление по длине при движении в цилиндрической трубе при ламинарном течении
- •4.3. Формула Дарси-Вейсбаха
- •4.4. Турбулентное движение в гидравлически гладких и шероховатых трубах
- •4.5. Движение жидкости в трубах некруглого сечения
- •4.6. Местные гидравлические сопротивления
- •4.7. Зависимость коэффициентов местных сопротивлений от числа Рейнольдса. Эквивалентная длина
- •4.8. Кавитация
- •4.9. Истечение жидкостей из отверстия в тонкой стенке
- •4.10. Зависимость коэффициентов истечения от числа Рейнольдса
- •4.11. Истечение из насадков
- •4.12. Виды насадков
- •5. Практическое применение законов гидравлики
- •5.1. Расчет короткого трубопровода
- •5.2. Расчет длинных трубопроводов
- •5.2.1. Понятие о простом и сложном напорных трубопроводах
- •5.2.2. Расчет трубопроводов, соединенных последовательно и параллельно
- •6 Движение воды в открытых руслах. Формула Шези
- •7. Гидравлические машины
- •7.1. Лопастные насосы
- •7.2. Поршневые насосы
- •7.3. Индикаторная диаграмма поршневых насосов
- •7.4. Баланс энергии в насосах
- •7.5. Обозначение элементов гидро- и пневмосистем
- •Условные обозначения основных гидроэлементов
2.2.6. Общее уравнение энергии в интегральной форме (Уравнение Бернулли для потока реальной жидкости)
Для двух сечений струйки невязкой жидкости это уравнение будет выглядеть следующим образом
|
|
(2.45) |
Сумма слева представляет полную удельную энергию струйки в сечении 1-1, сумма справа – полную удельную энергию струйки в сечении 2-2. Можно записать, что
.
На практике энергия струйки в начале больше энергии струйки в конце, т.к. часть энергии теряется на преодолении сил вязкости. В процессе движения вязкой жидкости запас ее механической энергии уменьшается, и на самом деле
.
Обозначим энергию, затрачиваемую на преодоление сил сопротивления Eпот. Eпот – это та часть механической энергии, которая, вследствие вязкости, переходит в тепловую энергию. Другими словами можно сказать, что Eпот – это часть энергии, которая израсходована на преодоление гидравлических сопротивлений.
|
Е1 = Е2 + Eпот. |
(2.46) |
При выводе уравнения Бернулли для элементарной струйки можно было пренебречь изменением скорости и давления в пределах нормальных сечений благодаря их малым величинам. В потоке жидкости скорости и давления в пределах живых сечений различны, и это необходимо учитывать. Согласно гипотезе Ньютона, жидкость как бы прилипает к стенкам канала, по которому она течет и ее скорость равна нулю. Но с увеличением расстояния от стенки, скорость струек увеличивается. Так называемая мощность потока складывается из энергии отдельных струек
,
где N – мощность потока; dN – мощность струйки; S – площадь живого сечения потока.
Для мощности струйки можно записать:
dN = Ed
= (gz +
+
)
ρuds,
где ds – площадь живого сечения струйки.
Величина удельной энергии потока равна частному от деления мощности потока на массовый расход
.
Это уравнение можно разбить на два интеграла
E =
=
,
где
– удельная потенциальная энергия потока
относительно выбранной плоскости
сравнения;
– удельная кинетическая энергия потока.
Для вычисления
надо знать закон изменения давления по
живому сечению. Для плавноизменяющихся
течений ускорения и силы инерции
незначительны, поэтому ими можно
пренебречь. Экспериментально доказано,
что в плавноизменяющемся потоке давления
распределяются по закону гидростатистики
gz
=
const.
|
= |
(2.47) |
Для вычисления интеграла
нужно знать закон распределения скоростей
по сечению. Умножим и поделим это
выражение на
.
=
=
,
где α – коэффициент, который учитывает неравномерность распределения скоростей в сечении, называется коэффициент Кориолиса. Получаем выражение для удельной кинетической энергии потока:
|
= |
(2.48) |
Запишем уравнение Бернулли для двух сечений потока реальной жидкости
|
|
(2.49) |
Полученное уравнение позволяет сделать следующие выводы:
1. При увеличении кинетической энергии потока от одного сечения к другому потенциальная энергия уменьшается, и, наоборот, с увеличением потенциальной энергии, кинетическая уменьшается.
2. Коэффициент α тем больше, чем больше скорости отдельных струек отличаются от величины средней скорости. Если скорости всех элементарных струек будут равны средней скорости, то α = 1.