
- •Введение
- •1. Основные способы контактной сварки
- •1.1. Контактная точечная сварка
- •1.1.1. Сущность способа точечной сварки
- •1.1.2. Основные параметры точечных сварных соединений
- •1.1.3. Двусторонняя точечная сварка и ее разновидности
- •1.1.4. Особенности односторонней точечной сварки
- •1.2. Рельефная сварка
- •Некоторые рекомендуемые конструктивные элементы рельефных соединений, мм (см. Рис. 1.8, а)
- •1.3. Шовная сварка
- •1.4. Стыковая сварка
- •2. Образование соединений при точечной, рельефной и шовной сварке
- •2.1. Общая схема формирования точечного сварного соединения
- •2.2. Источники теплоты при сварке
- •2.3. Общее сопротивление участка электрод – электрод
- •2.3.1. Электрическая проводимость зоны сварки
- •2.3.2. Контактные сопротивления
- •2.3.3. Собственное сопротивления деталей
- •2.3.4. Общее электрическое сопротивления зоны сварки
- •Рекомендуемые размеры электродов
- •2.4. Температурное поле в зоне формирования соединения
- •2.5. Тепловой баланс в зоне сварки и расчет сварочного тока
- •Расчет сварочного тока
- •2.6. Пластическая деформация металла при сварке
- •2.6.1. Роль пластической деформации
- •2.6.2. Микропластическая деформация
- •2.6.3. Объемная пластическая деформация при точечной сварке
- •2.6.4. Особенности объемной пластической деформации при шовной и рельефной сварке
- •2.7. Удаление поверхностных пленок
- •2.8. Дефекты сварных соединений
- •2.8.1.Непровары
- •2.8.2. Выплески
- •2.8.3. Вмятины
- •2.8.4. Дефекты литой зоны сварного соединения
- •2.8.5. Хрупкое соединение
- •2.8.6. Негерметичность
- •2.8.7. Снижение коррозионной стойкости соединений
- •2.8.8. Неблагоприятные изменения структуры металла сварного соединения
- •2.8.9. Дефекты рельефной сварки
- •2.8.10. Дефекты при стыковой сварке
- •2.9. Исправление дефектов контактной сварки
- •3. Технологический процесс изготовления сварных конструкций
- •3.1. Выбор способа сварки
- •3.2. Выбор рациональной конструкции деталей и элементов соединений
- •3.3. Общая схема технологического процесса изготовления сварных узлов
- •3.3.1. Изготовление деталей
- •3.3.2. Подготовка поверхности
- •Состав растворов для химической обработки деталей из различных сплавов
- •3.3.3. Сборка
- •3.3.4. Прихватка
- •3.4. Циклы традиционных способов контактной точечной сварки
- •3.5. Параметры режимов контактной сварки
- •Рекомендуемые значения tш min
- •3.6. Особенности точечной, шовной и рельефной сварки различных соединений
- •3.6.1. Сварка деталей малой толщины
- •3.6.2. Сварка деталей большой толщины
- •3.6.3. Сварка пакета из трех и более деталей
- •3.6.4. Сварка деталей неравной толщины
- •3.6.5. Сварка деталей из разноименных материалов
- •3.7. Технология стыковой сварки
- •3.7.1. Выбор способа сварки, конструкции соединения и подготовка деталей к сварке
- •3 .7.2. Технология сварки различных металлов и узлов
- •3.7.2.1. Выбор режима сварки
- •3.7.2.2. Технологические особенности процесса стыковой сварки
- •3.7.2.3. Режимы сварки различных металлов
- •3.7.2.4. Особенности технологии стыковой сварки различных деталей
- •3.7.3. Доводочные операции после стыковой сварки
- •5. Машины контактной сварки
- •5.1. Классификация и назначение машин контактной сварки
- •5.2. Основные характеристики контактных машин
- •5.3. Общая характеристика контактных машин
- •5.3.1. Машины точечной сварки
- •5.3.2. Машины рельефной сварки
- •5.3.3. Машины шовной сварки
- •5.3.4. Машины стыковой сварки
- •5.4. Механическая часть контактных машин
- •5.4.1. Корпуса и станины
- •5.4.2. Сварочный контур
- •5.4.3. Электроды
- •5.5. Электрическое силовое устройство машин
- •5.5.1. Электрические силовые схемы контактных машин
- •5.5.1.1. Однофазные машины переменного тока.
- •5.5.1.2. Трехфазные низкочастотные машины
- •5.5.1.3. Трехфазные машины постоянного тока
- •5.5.1.4. Машины для конденсаторной сварки
- •5.6. Назначение и схемы основных элементов электрической части машин
- •5.6.1. Сварочные трансформаторы
- •5.6.2. Контакторы
- •5.6.3. Регуляторы цикла сварки
- •5.7. Установка и наладка контактных машин
- •Список рекомендуемой литературы
2. Образование соединений при точечной, рельефной и шовной сварке
2.1. Общая схема формирования точечного сварного соединения
В общем случае для формирования сварных соединении деталей, в том числе и при контактной точечной сварке, необходимо образование физического контакта между соединяемыми их поверхностями, химических связей в нем и развитие релаксационных процессов в объемах металла зоны сварки. В каждой элементарной точке эти процессы идут последовательно, а по отношению ко всей соединяемой поверхности могут протекать одновременно. При КТС их зарождение и развитие обеспечивается комплексным тепловым и силовым воздействием на металл зоны формирования соединения.
Термодеформационные процессы, протекающие в зоне формирования точечного сварного соединения, в соответствии со значимостью их влияния на конечный результат сварки принято условно разделять на основные процессы и процессы сопутствующие.
К основным термодеформационным процессам относят процессы, без протекания которых формирование точечного сварного соединения в принципе невозможно. К ним относят, в частности, следующие:
нагрев и расплавление металла проходящим током;
образование общей зоны расплавленного металла (ядра) и его кристаллизацию на последней стадии формирования соединений;
микроскопические деформации металла в контактах и макроскопические в зоне формирования соединения.
К сопутствующим термодеформационным процессам сварки относят процессы, которые не только не обязательны для формирования сварного соединения, но некоторые из них и нежелательны, так как ухудшают условия формирования соединения и конечные результаты сварки. При КТС они являются неизбежным следствием протекания в зоне сварки процессов основных. В частности, к сопутствующим процессам относят следующие:
дилатацию металла в зоне формирования соединений;
перемешивание металла в ядре и удаление окисных пленок;
воздействие термодеформационного цикла сварки на свойства металла в зоне сварки и прилегающей к ней области;
образование остаточных напряжений и деформаций в деталях;
массоперенос в контактах электрод – деталь.
Несмотря на изменение значимости влияния каждого из перечисленных выше основных термодеформационных процессов, в процессе сварки общая схема формирования соединения происходит по единой схеме. Поэтому цикл сварки во временной последовательности условно разделяют на отдельные этапы, в соответствии со значимостью влияния какого-либо из основных факторов в их период. По-видимому, цикл сварки во временной последовательности целесообразно разделить на следующие четыре этапа (рис. 2.1), которые отличаются не только значимостью влияния какого-либо из основных факторов на процесс формирования соединения, но и основными технологическими задачами, выполняемыми сочетанием параметров режима в этот период:
1-й этап — от начала сжатия деталей электродами усилием FЭ до начала импульса тока IСВ;
2-й этап — от начала импульса тока IСВ до начала расплавления металла в контакте деталь – деталь (до начала формирования ядра);
3-й этап — от начала формирования ядра диаметром dЯ в контакте деталь – деталь до окончания импульса сварочного тока IСВ;
4-й этап — от окончания импульса сварочного тока IСВ до снятия усилия FЭ сжатия деталей электродами.
Н
а
первом этапе сжатие деталей электродами
вызывает микропластические деформации
в контактах деталь-деталь и электрод-деталь,
следствием которых является формирование
механических и электрических контактов.
Главная задача на этом этапе — это
обеспечение стабильности параметров
контактов, что является исходным условием
устойчивого течения процесса сварки и
получения стабильных размеров ядра.
На втором этапе включение тока приводит к нагреву металла в зоне сварки, который интенсифицирует процессы микропластических деформаций, разрушения окисных пленок, формирования механических и электрических контактов. Нагретый металл зоны сварки расширяется, деформируется преимущественно в зазор между деталями, вследствие чего в контакте деталь – деталь образуется рельеф (уплотняющий поясок). Это приводит к расхождению электродов Δ. Динамика увеличения уплотняющего пояска на этом этапе определяет изменение плотности тока в зоне сварки и скорость тепловыделения в ней. Главная задача на этом этапе — это обеспечение оптимальной скорости нагрева металла в зоне сварки.
На третьем этапе происходит расплавление металла в области контакта деталь-деталь, образование ядра и уплотняющего пояска вокруг него, который предотвращает выброс расплавленного металла. По мере прохождения тока продолжается нагрев металла в зоне сварки, ядро растет по диаметру и высоте, происходит перемешивание металла, удаление поверхностных пленок и образование металлических связей в жидкой фазе. Продолжаются процессы теплового расширения металла в зоне сварки и его пластической деформации. Главная задача на этом этапе — это обеспечение оптимальной степени макродеформаций металла в зоне сварки, которая бы обеспечивала оптимальную скорость нагрева металла в зоне сварки и предотвращала выброс расплавленного металла.
На четвёртом этапе происходит охлаждение металла в зоне сварки и его кристаллизация в ядре, параметры которого определяют эксплуатационные свойства точечного сварного соединения. При охлаждении металла уменьшается его объем, вследствие чего возникают остаточные напряжения и деформации. Главная задача на этом этапе — это обеспечение степени макродеформаций металла в зоне сварки, достаточной для компенсации усадки металла.
Для получения следующего соединения цикл через определенную паузу вновь повторяется.
При шовной сварке за счет теплопередачи от предыдущих точек процессы пластической деформации при сварке второй и последующих точек на всех трех этапах облегчаются. Снижается также скорость кристаллизации ядра, что приводит к уменьшению остаточных напряжений.
Обеспечение высокого качества сварки и максимальной производительности процесса для данной толщины, формы и материала изделий определяется правильностью выбранного режима сварки. Режим сварки — это совокупность электрических, механических и временных параметров, обеспечиваемых сварочным оборудованием для получения качественного соединения.
Кроме того, качество соединений зависит от техники сварки, формы электродов, качества сборки и подготовки поверхности, сварочного оборудования, системы контроля и от других конструктивно-технологических факторов.