
- •Введение
- •1. Основные способы контактной сварки
- •1.1. Контактная точечная сварка
- •1.1.1. Сущность способа точечной сварки
- •1.1.2. Основные параметры точечных сварных соединений
- •1.1.3. Двусторонняя точечная сварка и ее разновидности
- •1.1.4. Особенности односторонней точечной сварки
- •1.2. Рельефная сварка
- •Некоторые рекомендуемые конструктивные элементы рельефных соединений, мм (см. Рис. 1.8, а)
- •1.3. Шовная сварка
- •1.4. Стыковая сварка
- •2. Образование соединений при точечной, рельефной и шовной сварке
- •2.1. Общая схема формирования точечного сварного соединения
- •2.2. Источники теплоты при сварке
- •2.3. Общее сопротивление участка электрод – электрод
- •2.3.1. Электрическая проводимость зоны сварки
- •2.3.2. Контактные сопротивления
- •2.3.3. Собственное сопротивления деталей
- •2.3.4. Общее электрическое сопротивления зоны сварки
- •Рекомендуемые размеры электродов
- •2.4. Температурное поле в зоне формирования соединения
- •2.5. Тепловой баланс в зоне сварки и расчет сварочного тока
- •Расчет сварочного тока
- •2.6. Пластическая деформация металла при сварке
- •2.6.1. Роль пластической деформации
- •2.6.2. Микропластическая деформация
- •2.6.3. Объемная пластическая деформация при точечной сварке
- •2.6.4. Особенности объемной пластической деформации при шовной и рельефной сварке
- •2.7. Удаление поверхностных пленок
- •2.8. Дефекты сварных соединений
- •2.8.1.Непровары
- •2.8.2. Выплески
- •2.8.3. Вмятины
- •2.8.4. Дефекты литой зоны сварного соединения
- •2.8.5. Хрупкое соединение
- •2.8.6. Негерметичность
- •2.8.7. Снижение коррозионной стойкости соединений
- •2.8.8. Неблагоприятные изменения структуры металла сварного соединения
- •2.8.9. Дефекты рельефной сварки
- •2.8.10. Дефекты при стыковой сварке
- •2.9. Исправление дефектов контактной сварки
- •3. Технологический процесс изготовления сварных конструкций
- •3.1. Выбор способа сварки
- •3.2. Выбор рациональной конструкции деталей и элементов соединений
- •3.3. Общая схема технологического процесса изготовления сварных узлов
- •3.3.1. Изготовление деталей
- •3.3.2. Подготовка поверхности
- •Состав растворов для химической обработки деталей из различных сплавов
- •3.3.3. Сборка
- •3.3.4. Прихватка
- •3.4. Циклы традиционных способов контактной точечной сварки
- •3.5. Параметры режимов контактной сварки
- •Рекомендуемые значения tш min
- •3.6. Особенности точечной, шовной и рельефной сварки различных соединений
- •3.6.1. Сварка деталей малой толщины
- •3.6.2. Сварка деталей большой толщины
- •3.6.3. Сварка пакета из трех и более деталей
- •3.6.4. Сварка деталей неравной толщины
- •3.6.5. Сварка деталей из разноименных материалов
- •3.7. Технология стыковой сварки
- •3.7.1. Выбор способа сварки, конструкции соединения и подготовка деталей к сварке
- •3 .7.2. Технология сварки различных металлов и узлов
- •3.7.2.1. Выбор режима сварки
- •3.7.2.2. Технологические особенности процесса стыковой сварки
- •3.7.2.3. Режимы сварки различных металлов
- •3.7.2.4. Особенности технологии стыковой сварки различных деталей
- •3.7.3. Доводочные операции после стыковой сварки
- •5. Машины контактной сварки
- •5.1. Классификация и назначение машин контактной сварки
- •5.2. Основные характеристики контактных машин
- •5.3. Общая характеристика контактных машин
- •5.3.1. Машины точечной сварки
- •5.3.2. Машины рельефной сварки
- •5.3.3. Машины шовной сварки
- •5.3.4. Машины стыковой сварки
- •5.4. Механическая часть контактных машин
- •5.4.1. Корпуса и станины
- •5.4.2. Сварочный контур
- •5.4.3. Электроды
- •5.5. Электрическое силовое устройство машин
- •5.5.1. Электрические силовые схемы контактных машин
- •5.5.1.1. Однофазные машины переменного тока.
- •5.5.1.2. Трехфазные низкочастотные машины
- •5.5.1.3. Трехфазные машины постоянного тока
- •5.5.1.4. Машины для конденсаторной сварки
- •5.6. Назначение и схемы основных элементов электрической части машин
- •5.6.1. Сварочные трансформаторы
- •5.6.2. Контакторы
- •5.6.3. Регуляторы цикла сварки
- •5.7. Установка и наладка контактных машин
- •Список рекомендуемой литературы
5.6.2. Контакторы
Устанавливаемый в первичной обмотке сварочного трансформатора контактор служит для включения и выключения первичного тока трансформатора. В зависимости от назначения машины и требуемой надежности получаемых сварных соединений применяют электромагнитные или вентильные (преимущественно тиристорные) контакторы.
Электромагнитный контактор (рис.3.18, а) представляет собой электромагнит, к которому притягивается якорь с укрепленными на нем подвижными контактами 1 в момент подачи тока в катушку 2 от блока управления током БУТ. При этом замыкается электрическая цепь машины и подается напряжение к первичной обмотке трансформатора СТр. При отключении катушки 2 якорь с подвижными контактами 1 быстро возвращается в исходное положение пружинами.
Э
лектромагнитные
контакторы на большую разрывную мощность
имеют значительные размеры, малый срок
службы из-за образования дуги при
выключении и низкое число включений в
минуту (5…8). Кроме того, обладая большим
и недостаточно стабильным временем
отпускания, они не способны пропускать
строго дозированные порции энергии,
что приводит к нестабильности качества
соединений, особенно при сварке на
жестких режимах. Поэтому в настоящее
время электромагнитные контакторы
обычно используют в машинах стыковой
сварки, трубных станах и шовных машинах
малой мощности.
При использовании электромагнитного контактора включение сварочного трансформатора в сеть происходит в любой момент времени по отношению к фазе питающего напряжения, т. е. асинхронно.
В подавляющем большинстве современных машин контактной сварки подключение сварочного трансформатора к электрической сети производится синхронно, т. е. в определенный момент по отношению к фазе питающего напряжения, с помощью тиристорных контакторов. Только в машинах большой мощности (коммутируемые токи более 1500 А) применяют игнитронные контакторы; при этом в цепях поджигания игнитронов устанавливают тиристоры без принудительного охлаждения.
Игнитронный контактор основан на игнитронах, представляющих собой трехэлектродный управляемый ионный прибор с ртутным катодом. Игнитроны малочувствительны к перегрузкам, однако длительность их работы обычно ограничивается стойкостью поджигателя (третий электрод, включающий вентиль) и составляет 1000 часов и более. Игнитронные контакторы имеют большие габариты и устанавливаются только в вертикальном положении, для них характерно ненадежное поджигание и низкий КПД.
Основа тиристорного контактора — тиристор — характеризуется долговечностью (до 12000 ч), малыми размерами, высоким КПД (падение напряжения на тиристоре 3…4 В) и высокой надежностью в эксплуатации, его можно устанавливать в различных пространственных положениях. Тиристор чувствителен к перенапряжению и требует применения соответствующей защиты.
Т
иристорный
контактор (рис. 5.17) состоит из двух
тиристоров Т1 и Т2, включенных
встречно-параллельно. Анод каждого
вентиля соединен с катодом другого
вентиля, и вся эта группа включена
последовательно с первичной обмоткой
трансформатора СТр. Если полярность
полуволны переменного напряжения
такова, что напряжение линии А
положительно относительно линии В,
то проводить ток будет (при наличии
управляющего сигнала) вентиль Т1.
При обратной полярности проводящим
окажется вентиль Т2.
Промышленность выпускает тиристорные контакторы (работающие при напряжении сети 220 и 380 В) типа КТ-1, КТ-03, КТ-04, КТ-07, КТ-1! и КТ-12, отличающиеся по величине номинального тока (при ПВ 20 % и времени непрерывной работы не более 0,5 с) соответственно 250, 850, 1400, 480, 1000 и 1750 А. Контакторы имеют водяное охлаждение, за исключением КТ-07, и контрольное устройство (биметаллическое термореле), ограничивающее повышение температуры выше 60 °С, а также варисторы для защиты от возможных перенапряжений. Примерный расход охлаждающей воды составляет около 2 л/мин. Напряжение импульса управления колеблется в пределах 15…30 В, а ток управления 0,4…2 А. Характер включения контакторов (асинхронное или синхронное) зависит от устройства системы управления БУТ.