
- •Введение
- •1. Основные способы контактной сварки
- •1.1. Контактная точечная сварка
- •1.1.1. Сущность способа точечной сварки
- •1.1.2. Основные параметры точечных сварных соединений
- •1.1.3. Двусторонняя точечная сварка и ее разновидности
- •1.1.4. Особенности односторонней точечной сварки
- •1.2. Рельефная сварка
- •Некоторые рекомендуемые конструктивные элементы рельефных соединений, мм (см. Рис. 1.8, а)
- •1.3. Шовная сварка
- •1.4. Стыковая сварка
- •2. Образование соединений при точечной, рельефной и шовной сварке
- •2.1. Общая схема формирования точечного сварного соединения
- •2.2. Источники теплоты при сварке
- •2.3. Общее сопротивление участка электрод – электрод
- •2.3.1. Электрическая проводимость зоны сварки
- •2.3.2. Контактные сопротивления
- •2.3.3. Собственное сопротивления деталей
- •2.3.4. Общее электрическое сопротивления зоны сварки
- •Рекомендуемые размеры электродов
- •2.4. Температурное поле в зоне формирования соединения
- •2.5. Тепловой баланс в зоне сварки и расчет сварочного тока
- •Расчет сварочного тока
- •2.6. Пластическая деформация металла при сварке
- •2.6.1. Роль пластической деформации
- •2.6.2. Микропластическая деформация
- •2.6.3. Объемная пластическая деформация при точечной сварке
- •2.6.4. Особенности объемной пластической деформации при шовной и рельефной сварке
- •2.7. Удаление поверхностных пленок
- •2.8. Дефекты сварных соединений
- •2.8.1.Непровары
- •2.8.2. Выплески
- •2.8.3. Вмятины
- •2.8.4. Дефекты литой зоны сварного соединения
- •2.8.5. Хрупкое соединение
- •2.8.6. Негерметичность
- •2.8.7. Снижение коррозионной стойкости соединений
- •2.8.8. Неблагоприятные изменения структуры металла сварного соединения
- •2.8.9. Дефекты рельефной сварки
- •2.8.10. Дефекты при стыковой сварке
- •2.9. Исправление дефектов контактной сварки
- •3. Технологический процесс изготовления сварных конструкций
- •3.1. Выбор способа сварки
- •3.2. Выбор рациональной конструкции деталей и элементов соединений
- •3.3. Общая схема технологического процесса изготовления сварных узлов
- •3.3.1. Изготовление деталей
- •3.3.2. Подготовка поверхности
- •Состав растворов для химической обработки деталей из различных сплавов
- •3.3.3. Сборка
- •3.3.4. Прихватка
- •3.4. Циклы традиционных способов контактной точечной сварки
- •3.5. Параметры режимов контактной сварки
- •Рекомендуемые значения tш min
- •3.6. Особенности точечной, шовной и рельефной сварки различных соединений
- •3.6.1. Сварка деталей малой толщины
- •3.6.2. Сварка деталей большой толщины
- •3.6.3. Сварка пакета из трех и более деталей
- •3.6.4. Сварка деталей неравной толщины
- •3.6.5. Сварка деталей из разноименных материалов
- •3.7. Технология стыковой сварки
- •3.7.1. Выбор способа сварки, конструкции соединения и подготовка деталей к сварке
- •3 .7.2. Технология сварки различных металлов и узлов
- •3.7.2.1. Выбор режима сварки
- •3.7.2.2. Технологические особенности процесса стыковой сварки
- •3.7.2.3. Режимы сварки различных металлов
- •3.7.2.4. Особенности технологии стыковой сварки различных деталей
- •3.7.3. Доводочные операции после стыковой сварки
- •5. Машины контактной сварки
- •5.1. Классификация и назначение машин контактной сварки
- •5.2. Основные характеристики контактных машин
- •5.3. Общая характеристика контактных машин
- •5.3.1. Машины точечной сварки
- •5.3.2. Машины рельефной сварки
- •5.3.3. Машины шовной сварки
- •5.3.4. Машины стыковой сварки
- •5.4. Механическая часть контактных машин
- •5.4.1. Корпуса и станины
- •5.4.2. Сварочный контур
- •5.4.3. Электроды
- •5.5. Электрическое силовое устройство машин
- •5.5.1. Электрические силовые схемы контактных машин
- •5.5.1.1. Однофазные машины переменного тока.
- •5.5.1.2. Трехфазные низкочастотные машины
- •5.5.1.3. Трехфазные машины постоянного тока
- •5.5.1.4. Машины для конденсаторной сварки
- •5.6. Назначение и схемы основных элементов электрической части машин
- •5.6.1. Сварочные трансформаторы
- •5.6.2. Контакторы
- •5.6.3. Регуляторы цикла сварки
- •5.7. Установка и наладка контактных машин
- •Список рекомендуемой литературы
1.1.2. Основные параметры точечных сварных соединений
Точечное сварное соединение (рис. 1.2), поскольку сварку в подавляющем числе случаев осуществляют электродами с цилиндрической рабочей частью, обычно считают осесимметричным. Такое соединение (сварную точку) принято характеризовать геометрическими параметрами в плоскости оси электродов, которые называют «конструктивными элементами соединения». Кроме того, геометрическими параметрами характеризуют также и рабочие части электродов.
Основными геометрическими параметрами, наиболее часто используемыми и в большинстве случаев регламентируемыми, являются параметры, которые описывают ядро расплавленного металла (диаметр и высота ядра, проплавление деталей), остаточные деформации деталей (глубина вмятин от электродов), а также рабочие поверхности электродов (диаметр плоской и радиус сферической).
Ядро расплавленного металла в большинстве случаев характеризуют его размерами: диаметром dЯ в плоскости контакта деталь-деталь (свариваемого контакта), а также его высотой hЯ или проплавлением деталей А1 и А3.. Последние определяют отдельно для каждой детали как отношение к толщине деталей s1 и s2 расстояний h1 и h2 от плоскости свариваемого контакта до границы зоны расплавленного металла и выражают обычно в процентах:
%,
%. (1.1)
При точечной сварке деталей одноточечные соединения применяют относительно редко. В подавляющем числе случаев точечной сварки осуществляют многоточечные соединения деталей (рис. 1.3). Последние выполняют в виде одного (рис. 1.3, а) или нескольких (рис. 1.3, б) рядов сварных точек, расположенных вдоль нахлестки деталей.
К основным конструктивным элементам, характеризующим многоточечные соединения, относят: ширину нахлестки В, расстояние (шаг) между точками tШ в ряду (в шве), расстояниями между осями швов b, а также расстоянием u между крайними осями швов и кромками листов.
Перечисленные выше конструктивные элементы сварных соединений существенно влияют как на процесс их формирования при КТС, так и на показатели качества готовых сварных соединений. Поэтому их допускаемые значения в подавляющем большинстве случаев регламентируются, например, в ГОСТах, ОСТах, отраслевых технологических рекомендациях, стандартах предприятий.
Р
азмеры
ядра (его диаметр dЯ и
высота hЯ,
а также проплавление деталей А1
и А2) наиболее значимо
влияют на свойства точечного соединения,
в первую очередь, на прочностные. Поэтому
получение оптимальных значений этих
параметров, которые должны находиться
в пределах между минимальными и
максимальными допускаемыми их значениями,
и является основной задачей технологии
точечной сварки.
Минимально допускаемые значения диаметра ядра зависят от толщины s свариваемых деталей и приближенно определяются по одной из следующих зависимостей:
или
.
(1.2)
Они регламентированы ГОСТ 15878 – 79 (табл. 1.1). Эти табличные значения диаметров ядра выработаны многолетней практикой КТС.
В
еличина
проплавления деталей А1
и А2 в большинстве
случаев должна находиться в пределах
20…80 % от толщины деталей. На титановых
сплавах верхний предел увеличивают до
95 %, а на магниевых — уменьшают до 70 %.
Минимально допускаемое расстояние между осями швов b устанавливают из условия отсутствия влияния шунтирования тока на процесс КТС. Его выбирают таким, чтобы расстояние до соседних точек в любом направлении, например t1, было не меньше минимально допускаемого шага между точками tШ.
Минимальную ширину нахлестки В, а также минимальное расстояние от центра точки или оси шва до края нахлестки u устанавливают по условию отсутствия объемных пластических деформаций металла на краю нахлестки. Причем минимальные значения и должны быть не менее 0,5В.
Глубина вмятин от электродов с1 и с2 не должна превышать 20 % от толщины деталей, поскольку они ухудшают внешний вид соединений и обычно уменьшают их прочность. Только при сварке деталей неравных толщин или в труднодоступных местах её допускают увеличивать до 30 %.
Широкое применение в современном машиностроении точечных сварных соединений вместо клепаных обусловлено не только преимуществами их технико-экономических показателей, но и конкурентной способностью эксплуатационных свойств. Прежде всего, это относится к их прочности, которую в основном определяют размеры ядра расплавленного металла в совокупности с другими конструктивными элементами сварных соединений, причем в первую очередь — к прочности динамической. Именно поэтому соответствие полученных при КТС размеров ядра заданным оптимальным значениям, в первую очередь его диаметра и проплавления деталей, является одним из основных критериев качества и надежности соединений деталей, выполненных контактной точечной сваркой.
Таблица 1.1
Минимально допускаемые значения геометрических параметров точечных соединений группы А по ГОСТ 15878 – 79.
Толщина деталей, s = s1, мм |
Минимальный диаметр ядра dЯ, мм |
Минимальная ширина нахлестки В, мм |
Минимальный шаг между точками tШ, мм |
|
алюминиевые, магниевые, медные сплавы |
стали, титановые сплавы |
|||
0,5 1,0 1,2 1,5 2,0 2,5 3,0 4,0 5,0 6,0 |
3 4 5 6 7 8 9 12 14 16 |
10 14 16 18 20 22 16 32 40 50 |
8 11 13 14 17 19 21 28 34 42 |
10 15 17 20 25 30 35 45 55 65 |