
- •Введение
- •1. Основные способы контактной сварки
- •1.1. Контактная точечная сварка
- •1.1.1. Сущность способа точечной сварки
- •1.1.2. Основные параметры точечных сварных соединений
- •1.1.3. Двусторонняя точечная сварка и ее разновидности
- •1.1.4. Особенности односторонней точечной сварки
- •1.2. Рельефная сварка
- •Некоторые рекомендуемые конструктивные элементы рельефных соединений, мм (см. Рис. 1.8, а)
- •1.3. Шовная сварка
- •1.4. Стыковая сварка
- •2. Образование соединений при точечной, рельефной и шовной сварке
- •2.1. Общая схема формирования точечного сварного соединения
- •2.2. Источники теплоты при сварке
- •2.3. Общее сопротивление участка электрод – электрод
- •2.3.1. Электрическая проводимость зоны сварки
- •2.3.2. Контактные сопротивления
- •2.3.3. Собственное сопротивления деталей
- •2.3.4. Общее электрическое сопротивления зоны сварки
- •Рекомендуемые размеры электродов
- •2.4. Температурное поле в зоне формирования соединения
- •2.5. Тепловой баланс в зоне сварки и расчет сварочного тока
- •Расчет сварочного тока
- •2.6. Пластическая деформация металла при сварке
- •2.6.1. Роль пластической деформации
- •2.6.2. Микропластическая деформация
- •2.6.3. Объемная пластическая деформация при точечной сварке
- •2.6.4. Особенности объемной пластической деформации при шовной и рельефной сварке
- •2.7. Удаление поверхностных пленок
- •2.8. Дефекты сварных соединений
- •2.8.1.Непровары
- •2.8.2. Выплески
- •2.8.3. Вмятины
- •2.8.4. Дефекты литой зоны сварного соединения
- •2.8.5. Хрупкое соединение
- •2.8.6. Негерметичность
- •2.8.7. Снижение коррозионной стойкости соединений
- •2.8.8. Неблагоприятные изменения структуры металла сварного соединения
- •2.8.9. Дефекты рельефной сварки
- •2.8.10. Дефекты при стыковой сварке
- •2.9. Исправление дефектов контактной сварки
- •3. Технологический процесс изготовления сварных конструкций
- •3.1. Выбор способа сварки
- •3.2. Выбор рациональной конструкции деталей и элементов соединений
- •3.3. Общая схема технологического процесса изготовления сварных узлов
- •3.3.1. Изготовление деталей
- •3.3.2. Подготовка поверхности
- •Состав растворов для химической обработки деталей из различных сплавов
- •3.3.3. Сборка
- •3.3.4. Прихватка
- •3.4. Циклы традиционных способов контактной точечной сварки
- •3.5. Параметры режимов контактной сварки
- •Рекомендуемые значения tш min
- •3.6. Особенности точечной, шовной и рельефной сварки различных соединений
- •3.6.1. Сварка деталей малой толщины
- •3.6.2. Сварка деталей большой толщины
- •3.6.3. Сварка пакета из трех и более деталей
- •3.6.4. Сварка деталей неравной толщины
- •3.6.5. Сварка деталей из разноименных материалов
- •3.7. Технология стыковой сварки
- •3.7.1. Выбор способа сварки, конструкции соединения и подготовка деталей к сварке
- •3 .7.2. Технология сварки различных металлов и узлов
- •3.7.2.1. Выбор режима сварки
- •3.7.2.2. Технологические особенности процесса стыковой сварки
- •3.7.2.3. Режимы сварки различных металлов
- •3.7.2.4. Особенности технологии стыковой сварки различных деталей
- •3.7.3. Доводочные операции после стыковой сварки
- •5. Машины контактной сварки
- •5.1. Классификация и назначение машин контактной сварки
- •5.2. Основные характеристики контактных машин
- •5.3. Общая характеристика контактных машин
- •5.3.1. Машины точечной сварки
- •5.3.2. Машины рельефной сварки
- •5.3.3. Машины шовной сварки
- •5.3.4. Машины стыковой сварки
- •5.4. Механическая часть контактных машин
- •5.4.1. Корпуса и станины
- •5.4.2. Сварочный контур
- •5.4.3. Электроды
- •5.5. Электрическое силовое устройство машин
- •5.5.1. Электрические силовые схемы контактных машин
- •5.5.1.1. Однофазные машины переменного тока.
- •5.5.1.2. Трехфазные низкочастотные машины
- •5.5.1.3. Трехфазные машины постоянного тока
- •5.5.1.4. Машины для конденсаторной сварки
- •5.6. Назначение и схемы основных элементов электрической части машин
- •5.6.1. Сварочные трансформаторы
- •5.6.2. Контакторы
- •5.6.3. Регуляторы цикла сварки
- •5.7. Установка и наладка контактных машин
- •Список рекомендуемой литературы
Состав растворов для химической обработки деталей из различных сплавов
Металл |
Раствор для травления |
Раствор для нейтрализации |
Допускаемые значения rээ, мкОм |
Низкоуглеродистые стали |
1. H2S04 (200 г), NaCl (10 г), регулятор травления КС (1 г) на 1 л воды, температура 50…60 °С. 2. НCl (200 г), КС (10 г) на 1 л воды, температура 30…40 °С |
NaOH или КОН на 1 л воды, температура 20…25 °С |
600 |
Конструкционные, низко-легированные стали |
1. H2S04 (200 г), HCl (10 г), КС (10 г на 1л воды, температура 50…60 °С 2. Н3РО4 (65…98 г), Na3P04 (35…50 г), эмульгатор ОП-7 (25-30 г), тиомочевина (5 г) на 0,8 л воды, температура 30…50 °С |
То же.
NaNО3 (5 г) на 1 л воды, температура 50…60 °С |
800 |
Коррозионно-стойкие и жаропрочные стали, никелевые сплавы |
Н3РО4 (110 г), HCl (130 г). HNO3 (10 г, на 0,75 л воды, температура 50…70 °С |
10 %-ный раствор NaNО3, температура 60…70 °С |
1000 |
Титановые сплавы |
НС (416 г), HNО3 (70 г), HF (50 г) на 0,6 л воды, температура 40…50 °С |
— |
1500 |
Медные сплавы |
1. HNO3 (280 г), HCl (1,5 г), сажа (1…2 г) на 1 л воды, температура 15…25 °С 2. HNО3 (280 г), H2SО4 (180 г), HCl (1 г) на 1 л воды, температура 15…25°С |
—
CrO3 (100 г), H2SО4 (4 г) нa 1л воды, температура 15…20 °С |
300 |
Алюминиевые сплавы |
Н3РО4 (110…155 г), К2Сг2О7 или Na2Cr2О7 на 1 л воды, температура 30…50°С |
HNО3 (15…25 г) на 1 л воды, температура 20…25°С |
80…120 |
Магниевые сплавы |
NaOH (300…500 г), NaNO3 (40…70 г), NaNО2 (150…250 г) на 0,5 л воды, температура 15…25 °С |
— |
120…180 |
Примечание. Составы данs для кислоте плотностью (г/см1) серной 1,84, азотной 1,4, соляной 1,19, ортофосфорной 1,6. |
Для алюминиевых сплавов используют растворы ортофосфорной кислоты с добавками калиевого или натриевого хромпика. Ортофосфорная кислота почти не взаимодействует с алюминием, но активно растворяет поверхностные оксиды. Если необходимо глубокое травление (например, снятие плакирующего слоя на сплаве АМг6), обработку ведут в горячем щелочном растворе. Однако поверхность активируется, и за короткое время (одни сутки) вновь возникает толстая оксидная пленка.
Алюминиевые и магниевые сплавы требуют дополнительной химической обработки для уплотнения и стабилизации новой оксидной пленки, ее пассивирования. Детали из алюминиевых сплавов пассивируют одновременно с травлением, вводя в травящий раствор хромпик. Магниевые сплавы пассивируют после травления, обрабатывая в растворе хромового ангидрида (Сг2О3).
Для небольших деталей ответственного назначения из коррозионно-стойких и жаропрочных сталей и сплавов, тугоплавких металлов и медных сплавов иногда применяют электролитическое травление и полирование.
После химического или электролитического травления часто необходима нейтрализация, т. е. удаление с поверхности продуктов реакции или электролита. Эту операцию называют также осветлением поверхности. Применяют различные растворы для нейтрализации (см. табл. 3.1).
Между каждыми операциями химической обработки детали промывают обычно в горячей, а затем в холодной воде с водородным показателем рН = 6,5 …7,5. Особо ответственные узлы окончательно промывают опресненной водой. Детали сушат горячим воздухом или в сушильных шкафах.
Обезжиривание, химическую обработку, промывку, сушку ведут в изолированном помещении с усиленной приточно-вытяжной вентиляцией и бортовыми отсосами у ванны. Детали транспортируют, загружают и вынимают механическими подъемниками. При большом масштабе производства подготовку поверхности проводят в специальных автоматизированных машинах струйным методом.
Качество подготовки поверхности оценивают визуально сравнением с эталонными образцами и измерением электрического сопротивления двух сжатых образцов rээ (см. табл. 3.1). Электросопротивление измеряют микроомметром типа Ф-412 или другими приборами на установках типа машины для точечной сварки с изоляцией одного из электродов. Усилие сжатия и размеры рабочей поверхности электродов выбирают, как при точечной сварке, в зависимости от толщины и материала деталей.
Для сталей и титановых сплавов достаточно виуального контроля: поверхность деталей должна быть матовой или иметь равномерный металлический блеск. Однако в спорных случаях измеряют электросопротивление. Для деталей из алюминиевого сплава визуального контроля недостаточно и в обязательном порядке измеряют электросопротивление rээ. Сразу после обработки деталей из сплавов Д16Т, В95Т, АМг6 rээ не превышает 40…60 мкОм, а деталей из сплавов АМг, АМц, САП, АБМ, ВКА-1 — 30…40 мкОм. В течение 4…5 суток rээ медленно повышается до 100…120 мкОм. Без пассивирования rээ растет в 4…5 раз быстрее. Магниевые сплавы после пассивирования сохраняют низкое значение rээ в течение 8…10 суток.