
- •Введение
- •1. Основные способы контактной сварки
- •1.1. Контактная точечная сварка
- •1.1.1. Сущность способа точечной сварки
- •1.1.2. Основные параметры точечных сварных соединений
- •1.1.3. Двусторонняя точечная сварка и ее разновидности
- •1.1.4. Особенности односторонней точечной сварки
- •1.2. Рельефная сварка
- •Некоторые рекомендуемые конструктивные элементы рельефных соединений, мм (см. Рис. 1.8, а)
- •1.3. Шовная сварка
- •1.4. Стыковая сварка
- •2. Образование соединений при точечной, рельефной и шовной сварке
- •2.1. Общая схема формирования точечного сварного соединения
- •2.2. Источники теплоты при сварке
- •2.3. Общее сопротивление участка электрод – электрод
- •2.3.1. Электрическая проводимость зоны сварки
- •2.3.2. Контактные сопротивления
- •2.3.3. Собственное сопротивления деталей
- •2.3.4. Общее электрическое сопротивления зоны сварки
- •Рекомендуемые размеры электродов
- •2.4. Температурное поле в зоне формирования соединения
- •2.5. Тепловой баланс в зоне сварки и расчет сварочного тока
- •Расчет сварочного тока
- •2.6. Пластическая деформация металла при сварке
- •2.6.1. Роль пластической деформации
- •2.6.2. Микропластическая деформация
- •2.6.3. Объемная пластическая деформация при точечной сварке
- •2.6.4. Особенности объемной пластической деформации при шовной и рельефной сварке
- •2.7. Удаление поверхностных пленок
- •2.8. Дефекты сварных соединений
- •2.8.1.Непровары
- •2.8.2. Выплески
- •2.8.3. Вмятины
- •2.8.4. Дефекты литой зоны сварного соединения
- •2.8.5. Хрупкое соединение
- •2.8.6. Негерметичность
- •2.8.7. Снижение коррозионной стойкости соединений
- •2.8.8. Неблагоприятные изменения структуры металла сварного соединения
- •2.8.9. Дефекты рельефной сварки
- •2.8.10. Дефекты при стыковой сварке
- •2.9. Исправление дефектов контактной сварки
- •3. Технологический процесс изготовления сварных конструкций
- •3.1. Выбор способа сварки
- •3.2. Выбор рациональной конструкции деталей и элементов соединений
- •3.3. Общая схема технологического процесса изготовления сварных узлов
- •3.3.1. Изготовление деталей
- •3.3.2. Подготовка поверхности
- •Состав растворов для химической обработки деталей из различных сплавов
- •3.3.3. Сборка
- •3.3.4. Прихватка
- •3.4. Циклы традиционных способов контактной точечной сварки
- •3.5. Параметры режимов контактной сварки
- •Рекомендуемые значения tш min
- •3.6. Особенности точечной, шовной и рельефной сварки различных соединений
- •3.6.1. Сварка деталей малой толщины
- •3.6.2. Сварка деталей большой толщины
- •3.6.3. Сварка пакета из трех и более деталей
- •3.6.4. Сварка деталей неравной толщины
- •3.6.5. Сварка деталей из разноименных материалов
- •3.7. Технология стыковой сварки
- •3.7.1. Выбор способа сварки, конструкции соединения и подготовка деталей к сварке
- •3 .7.2. Технология сварки различных металлов и узлов
- •3.7.2.1. Выбор режима сварки
- •3.7.2.2. Технологические особенности процесса стыковой сварки
- •3.7.2.3. Режимы сварки различных металлов
- •3.7.2.4. Особенности технологии стыковой сварки различных деталей
- •3.7.3. Доводочные операции после стыковой сварки
- •5. Машины контактной сварки
- •5.1. Классификация и назначение машин контактной сварки
- •5.2. Основные характеристики контактных машин
- •5.3. Общая характеристика контактных машин
- •5.3.1. Машины точечной сварки
- •5.3.2. Машины рельефной сварки
- •5.3.3. Машины шовной сварки
- •5.3.4. Машины стыковой сварки
- •5.4. Механическая часть контактных машин
- •5.4.1. Корпуса и станины
- •5.4.2. Сварочный контур
- •5.4.3. Электроды
- •5.5. Электрическое силовое устройство машин
- •5.5.1. Электрические силовые схемы контактных машин
- •5.5.1.1. Однофазные машины переменного тока.
- •5.5.1.2. Трехфазные низкочастотные машины
- •5.5.1.3. Трехфазные машины постоянного тока
- •5.5.1.4. Машины для конденсаторной сварки
- •5.6. Назначение и схемы основных элементов электрической части машин
- •5.6.1. Сварочные трансформаторы
- •5.6.2. Контакторы
- •5.6.3. Регуляторы цикла сварки
- •5.7. Установка и наладка контактных машин
- •Список рекомендуемой литературы
Расчет сварочного тока
Сварочный ток рассчитывают по закону Джоуля – Ленца. Зависимость (2.1), при условии осреднения за цикл сварки значений электрического сопротивления в зоне сварки, преобразуют к следующему виду:
,
(2.10)
где QЭЭ — общее количество теплоты, затрачиваемой на образование соединения; mr — коэффициент, учитывающий изменение rЭЭ в процессе сварки.
Для низкоуглеродистых сталей mr ≈ 1, для алюминиевых и магниевых сплавов mr ≈ 1,15, коррозионно-стойких сталей mr ≈ 1,2, сплавов титана mr ≈ 1,4.
Общее количество теплоты, затрачиваемой на образование соединения QЭЭ определяется из уравнения теплового баланса по зависимости (2.9), а конечное значение электрического сопротивления деталей — по зависимости (2.5).
Пример. Определить силу тока при точечной сварке листов из низкоуглеродистой стали толщиной 4 мм электродами с диаметром рабочей поверхности 12 мм и временем сварки 1 с. Температура ликвидуса стали 1500 °С, теплоемкость с для стали 0,67 КДж/(кгК), меди – 0,38 КДж/(кг×К), плотность γ для стали равна 7800 кг/м3, меди – 8900 кг/м3, коэффициент температуропроводности ам для стали равен 9×10-6 м2/с, меди – 8×10-5 м2/с. Электрическое сопротивление деталей к концу процесса сварки rДК ≈ 58 мкОм.
Значения экспериментальных коэффициентов примем: k1 = 0,8; k2 = 1,5. Вычислим значения x2 и x3 :
,
.
Вычислим значение QЭЭ по зависимости (2.9):
кДж.
Тогда искомая сила сварочного тока по зависимости (2.10) будет равна:
кА.
2.6. Пластическая деформация металла при сварке
2.6.1. Роль пластической деформации
Пластическая деформация металла — один из основных процессов, способствующих формированию соединений, вызывается как внешними факторами — усилием со стороны электродов, так и внутренними — напряжениями, возникающими при несвободном расширении металла зоны сварки. Пластическая деформация металла имеет место на протяжении всего процесса сварки: от формирования холодного контакта до проковки соединения.
Процесс пластической деформации неразрывно связан с процессом нагрева. Тесная взаимосвязь этих двух процессов проявляется в эффекте саморегулирования теплового состояния зоны сварки путем соответствующего изменения сопротивления пластической деформации, размеров контактов и плотности тока. Так, при случайном увеличении тока и росте температур снижается сопротивление пластической деформации, что приводит к увеличению площади контактов, снижению плотности тока, уменьшению интенсивности нагрева и определенной стабилизации температурного поля и размеров ядра.
В зависимости от объема деформируемого металла различают микропластическую деформацию рельефа контакта поверхности и объемную пластическую деформацию значительных масс металла зоны сварки. Пластическая деформация при сварке участвует в следующих термодеформационных процессах, способствующих формированию соединений:
в формировании электрического контакта;
в образовании пластического пояса для удержания расплавленного металла от выплеска и ограничения растекания сварочного тока во внутреннем контакте;
в уплотнении металла на стадии охлаждения.
Непосредственная роль пластической деформации в образовании металлических связей при точечной и шовной сварке невелика из-за малой относительной сдвиговой деформации в пояске. Лишь при сварке титановых сплавов за счет растворения оксидов в основном металле отмечается область развитой связи, повышающей прочность соединений. Возможно образование также связей в твердой фазе при микросварке некоторых металлов и наплавке.
При рельефной сварке за счет деформации выступов относительная сдвиговая деформация возрастает, что позволяет в ряде случаев получать достаточно прочные соединения без расплавления металла преимущественно при сварке углеродистой стали.