
- •Тема 2 1
- •Литература* Базовая
- •Дополнительная
- •Перечень умений
- •Тематический обзор
- •1. Процессор
- •1.1. Арифметико-логическое устройство
- •1.2. Устройство управления
- •1.3. Основные принципы работы современных процессоров
- •1.4. Регистры процессора
- •1.4.1. Регистры общего назначения
- •1.4.2.Указатель команд
- •1.4.3. Сегментные регистры
- •1.4.4. Регистр состояния микропроцессора Intel 8086
- •1.4.5. Управляющие регистры
- •1.5. Представление команд в эвм
- •1.6. Основные стадии выполнения команд
- •2. СисТемная шина
- •2.1. Шины
- •2.2. Шина данных. Разрядность шины
- •2.3. Адресная шина. Разрядность шины
- •2.4. Шина управления
- •2.5. Цикл шины
- •2.6. Системные и локальные шины
- •2.7. Стандарты шин
- •3. Многоуровневая организация памяти
- •3.1. Регистровая память
- •3.2.1. Кэширование памяти
- •3.2.2. Принципы кэширования
- •3.2.3. Кэш прямого отображения
- •3.2.4. Наборно-ассоциативный кэш
- •3.2.5. Ассоциативный кэш
- •3.3. Оперативная память
- •3.3.1. Логическое распределение оперативной памяти
- •3.3.2. Стандартная оперативная память
- •3.4. Страничная и сегментная организация памяти. Виртуальная память
- •3.4.1. Режимы процессора
- •3.4.2. Организация памяти
- •3.4.3. Концепция виртуальной памяти
- •3.4.4. Страничная организация памяти
- •3.4.5. Сегментация памяти
- •3.4.6. Механизм замены (своппирования) страниц
- •3.5. Защита информации и памяти
- •3.6. Внешняя память
- •3.6.1. Классификация накопителей
- •3.6.2. Логическая структура дисков
- •3.6.3. Флоппи-диски
- •3.6.4. Сменные диски
- •3.6.5. Стриммер
- •3.6.6. Магнитооптические накопители
- •3.6.7. Накопители на гибких магнитных дисках Бернулли
- •3.6.8. Накопители на гибких магнитных дисках Zip
- •4. Система ввода-вывода
- •4.1. Принципы организации обменов данными
- •4.1.1. Структура с одним общим интерфейсом
- •4.1.2. Структура с каналами ввода-вывода
- •4.1.3. Основные параметры интерфейсов
- •4.1.4. Параллельная и последовательная передача данных
- •4.1.5. Методы передачи информации между устройствами эвм
- •4.2. Индивидуальные каналы
- •4.2.1. Основные типы каналов ввода-вывода
- •4.3. Ввод-вывод с отображением на память
- •4.4. Порты ввода-вывода
- •4.4.1. Параллельный порт
- •4.4.2. Последовательный порт
- •Адреса и прерывания последовательных портов
- •Общие сведения об интерфейсе rs–232c
- •4.4.3. Развитие параллельного и последовательного интерфейсов
- •5. Организация прерываний
- •5.1 Механизм прерываний
- •5.1.1. Назначение системы прерываний
- •5.1.2. Порядок обработки прерывания
- •5.1.3. Характеристики системы прерывания
- •5.1.4. Приоритетное обслуживание запросов прерывания
- •5.1.5. Программное управление приоритетом
- •5.2. Организация системы прерываний микропроцессора х86
- •5.2.1. Аппаратные прерывания. Контроллер прерываний
- •5.2.2. Особенности обработки аппаратных прерываний
- •5.2.3. Внутренние прерывания
- •5.2.4. Таблица векторов прерываний
- •5.2.5. Процедуры прерываний
- •Задания для самостоятельной работы
- •Тренинг умений
- •1. Пример выполнения упражнения тренинга на умение № 1
- •2. Пример выполнения упражнения тренинга на умение № 2
- •3. Пример выполнения упражнения тренинга на умение № 3
- •4. Пример выполнения упражнения тренинга на умение № 4
- •5. Пример выполнения упражнения тренинга на умение № 5
- •6. Пример выполнения упражнения тренинга на умение № 6
- •Глоссарий
3.6.2. Логическая структура дисков
Все винчестеры и флоппи-диски, поддерживаемые MS-DOS, за рядом исключений, имеют сходный логический формат. Под логическим форматом понимается то, что на диске резервируются определенные области для хранения служебной информации, необходимой операционной системе для работы с этим устройством. Процесс создания и заполнения таких областей носит название логического форматирования. Для создания логической структуры диска используются специальные программы, входящие обычно в состав операционной системы или существующие как независимые утилиты. Заметим, что содержимое создаваемых областей может полностью или частично заполняться и изменяться не только во время форматирования, но и в процессе последующей работы с данным диском.
Итак, практически каждый диск содержит следующие области: загрузочная запись, или сектор BR (Boot Record), две (одну) таблицы размещения файлов (FAT – File Allocation Table), корневой каталог RD (Root Directory) и область данных DA (Data Area).
Загрузочный сектор BR каждого диска занимает по определению только один сектор.
Таблица размещения файлов располагается непосредственно после загрузочной записи и имеет переменный размер (разумеется, в секторах). FAT используется для хранения сведений о размещении файлов на диске. Заметим, что эта таблица состоит из элементов (12-, 16- или 32-битных), каждый из которых соответствует определенному участку дискового пространства и присвоенным кодом характеризует его состояние: занят, свободен или имеет дефект. В самом начале каждой таблицы FAT (первый элемент) хранится так называемый дескриптор (media descriptor), определяющий тип носителя (например, для жесткого диска – F8h). Отметим, что минимальным элементом, которым MS-DOS оперирует при работе с дисками, является не сектор, а кластер. Кластеры состоят из нескольких секторов (2, 4 и т.д.). Для дисков с магнитным носителем обычно используются две копии FAT, которые следуют одна за другой. Содержимое их полностью дублируется.
Корневой каталог диска всегда занимает строго фиксированное место – сразу за последней таблицей FAT. Он состоит из ограниченного числа записей, каждая из которых содержит информацию о файле или другом каталоге (подкаталоге), а также метке диска. Все остальное место на диске занимает область данных, содержащая файлы данных или подкаталогов.
3.6.3. Флоппи-диски
До настоящего времени приводами для флоппи-дисков оснащается большинство IBM PC-совместимых компьютеров. Они используются как для архивирования и хранения небольших объемов информации, так и для ее переноса с одного компьютера на другой.
История гибкого магнитного (флоппи) диска началась с того момента, когда магнитный слой нанесли на основу, подобную той, что используется в магнитной ленте. Чтобы не поцарапать и не испачкать поверхность носителя, диск поместили в достаточно жесткий пластиковый конверт, внутри которого он мог свободно вращаться. Первые флоппи-диски имели диаметр 8 дюймов (около 200 мм) и использовались на больших и мини-компьютерах.
Заметим, что уже на первых IBM PC использовались приводы для дисков диаметром 5,25 дюйма (133 мм), которые впервые появились в 1976 году. Первоначально на одном таком диске можно было записать всего 160 Кбайт информации, причем магнитный слой был нанесен только с одной стороны основы носителя. После того как магнитный слой стали наносить на пластиковую основу с обеих сторон, емкость носителя удвоилась. Соответственно привод стал использовать уже две головки. По мере развития технологии стала увеличиваться плотность записи, появились 5-дюймовые дискеты емкостью 360 Кбайт, а затем и 1,2 Мбайта.
Следующим этапом стали дискеты диаметром 3,5 дюйма (89 мм).
Емкость этих «малюток» сначала составляла 720 Кбайт, но вскоре достигла величины 1,44 Мбайта. При такой плотности записи защита магнитного слоя становится особенно актуальной, поэтому сам магнитный диск был спрятан в прочный пластмассовый корпус, а зона контакта головок с его поверхностью закрыта от случайных прикосновений специальной шторкой, которая отодвигается только внутри накопителя. Первый 3,5-дюймовый привод и соответствующий микрофлоппи-диск (micro floppy disk) были разработаны в 1980 году фирмой Sony. Несколько позже эта система была принята в качестве стандарта такими организациями, как ISO и ANSI.