Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Устройство ЭВМ и ее назначение.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
948.22 Кб
Скачать

Тематический обзор

(Жирным шрифтом выделены новые понятия, которые необходимо усвоить. Знание этих понятий будет проверяться при тестировании)

1. Классификация эвм

1.1. Развитие электронной базы, влияющее на усовершенствование эвм. Поколения эвм

ЭВМ – электронно-вычислительная машина, которая осуществляет действия с данными, представленными в той или иной форме.

Развитие радиоэлектроники и новейшей технологии произ­водства радиоаппаратуры обусловило смену поколений ЭВМ. Строго говоря, характеристикой поколения ЭВМ является конструктивно-технологическая составляющая элементной базы – вакуумные лампы, полупроводниковые приборы, интегральные микросхемы (ИМС), большие интегральные микросхемы (БИС). Разница между поколениями ЭВМ постепенно становилась все менее от­четливой по мере дальнейшего развития внешних устройств машин, систем связи, программ, дистанционных пультов, архитектуры машин и т.д.

К первому поколению относились ЭВМ, построенные в ос­новном на электровакуумных приборах.

Первая быстродействующая ЭВМ “ЭНИАК” (построена в 1946 г. в США) содержала около 18 тысяч ламп и потребляла более 100 кВт мощности электроэнергии. Машина работала в десятичной системе счисления. Сложение и вычитание произ­водились за 200 мкс, умножение – за 2800 мкс. Она пред­назначалась для решения дифференциальных уравнений в частных производных, а также некоторых других расчетов. В СССР в 1950 г. под руководством академика С. А. Лебедева в АН УССР была создана первая в Европе малая электронная счетная машина МЭСМ, которую можно отнести к классу машин общего назначения (в отличие от “ЭНИАК”, являю­щейся специализированной). Машина МЭСМ содержала около 2000 электронных ламп, работала по параллельно-по­следовательному принципу выполнения операций, имела быст­родействующую память на ламповых регистрах и внешнюю память на магнитном барабане. Структура и основные схемы этой машины являлись классическими, они положены в основу серии отечественных быстродействующих машин БЭСМ (1952 г.), БЭСМ-2, БЭСМ-4 и БЭСМ-6, созданных также под руководством академика С. А. Лебедева. Первые модели серии БЭСМ имели быстродействие до 10 тысяч арифметических дей­ствий в секунду. К первым ЭВМ широкого назначения в СССР относятся и машины М-1 (1952 г.), “Стрела” (1954 г.), “Урал-1” (1957 г.) и др.

Производство и внедрение машин первого поколения име­ло большое значение для создания отрасли электронного ма­шиностроения, для развития методов применения вычисли­тельной техники в различных областях. Так, ЭВМ первого поколения использовались для решения чисто вычислительных задач научного и делового характера. Машины просто ускоряли счет в рамках существующих мето­дов ручных вычислений. Машины первого поколения заложи­ли основу логического построения ЭВМ.

Однако применение электронных ламп сдерживало разви­тие логических и вычислительных возможностей цифровых вычислительных машин. Ламповые ЭВМ имели большие габа­ритные размеры, потребляли большую мощность, имели малое быстродействие, малую емкость оперативной памяти, недоста­точное математическое обеспечение и, что особенно важно, имели невысокую надежность.

Ко второму поколению относились ЭВМ, построенные в основном на полупроводниковых приборах. К ним относятся серийные машины М-20 и М-220, семейства серийных машин “Урал”, “Минск”, “Раздан” с быстродействием до 10–20 тысяч арифметических действий в секунду. В этот же период в Советском Союзе развиваются работы по созданию и применению цифровых управляющих вычислительных машин.

В вычислительных машинах и системах второго поколе­ния транзисторы полностью заменили в качестве активных элементов электронные лампы. Это существенно повысило надежность, снизило потребление мощности и уменьшило раз­меры ЭВМ. Было достигнуто улучшение всех основных харак­теристик, которое сопровождалось снижением их стоимости. Важным достижением явилось также применение в машинах второго поколения печатного монтажа, при котором нужная схема электрических соединений вытравливается на тонкой медной фольге, наклеенной на поверхности плоского листа изоляционного материала, и в некоторых машинах – монта­жа накруткой, при котором зачищенный конец одножильного провода накручивается на вывод, имеющий острые грани (обеспечивается получение высоконадежных соединений без нагрева и применения припоя).

Повысилась надежность периферийных электромеханиче­ских устройств, количество которых в машинах и системах второго поколения увеличилось.

Характерной особенностью ЭВМ второго поколения яви­лась их дифференциация по применению. Появились машины для научных расчетов, для решения экономических задач и, наконец, ЭВМ для управления производственными процесса­ми (управляющие машины). При создании ЭВМ второго поколения возникла необходимость обработки крупных массивов данных – решения большого количества отдельных задач. Этот период (60-е годы XX в.) характеризовался также появлением и развитием АСУ, в которых применялся только позадачный метод обра­ботки информации.

Электронные вычислительные машины второго поколения насчитывали сотни тысяч транзисторов и диодов, до миллиона резисторов и конденсаторов. Все эти компоненты связываются с помощью миллионов витых, сварных, паяных и разъемных соединений в общую систему. Разрабатывать, изготовлять и эксплуатировать такие сложные системы было достаточно трудно, дальнейшее усложнение их уже было почти невозможно. Выход из создав­шегося положения был найден при создании третьего поко­ления ЭВМ и систем на интегральных микросхемах, кото­рые появились в середине 60-х годов.

В машинах третьего поколения большинство транзисторов и дискретных деталей заменяется интегральными микросхе­мами, каждая из которых выполнена в виде отдельного при­бора. Такой прибор в корпусе, примерно равном по размерам транзистору, содержит несколько десятков компонентов, соот­ветствующих дискретным транзисторам, резисторам и конден­саторам. Эти компоненты интегрально, неразборно, соединены между собой и образуют законченный логический функцио­нальный блок, который соответствует сложной транзисторной электронной схеме, но имеет надежность и стоимость (при массовом производстве), приближающиеся к надежности и стоимости отдельного транзистора. При этом общее количест­во разъемных компонентов в ЭВМ значительно уменьшается, повышается ее надежность, а стоимость снижается. Конструк­ции современных ЭВМ третьего поколения весьма разнооб­разны, а комплект устройств, входящих в состав ЭВМ, изме­няется в очень широких пределах.

К машинам этого поколения относятся ЭВМ Единой систе­мы (ЕС) и Системы малых (СМ) ЭВМ.

Середина 70-х годов ознаменовалась появлением первых персональных компьютеров (ПК). Следующие поколения ЭВМ связаны с развитием ПК. Персональные компьютеры являются наиболее широко используемым видом ЭВМ, их мощность постоянно увеличивается, а область применения растет.