Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника1 (1).doc
Скачиваний:
2
Добавлен:
07.01.2020
Размер:
2.68 Mб
Скачать

Обозначение диода на схемах

 

Принцип действия полупроводникового диода  основан на свойстве односторонней проводимости  p-n перехода. Основное применение полупроводникового диода - выпрямитель тока. 

Вольт-амперная характеристика полупроводникового диода.

З ависимость силы тока от напряжения выражена  кривой АОВ.  Ветвь ОВ соответствует пропускному направлению тока, когда ток создается основными носителями зарядов, и  при увеличении напряжения сила тока возрастает. Ветвь АО соответствует току, созданному неосновными носителями зарядов, и значения силы тока невелики.

Прохождение тока через полупроводники

Рис.101 - Прохождение тока через полупроводники с электронной (а) и дырочной (б) проводимостями

Прохождение тока через полупроводники показано на рис.101. Дырки изображены в виде кружочков, а электроны — в виде точек. В полупроводнике типа n (рис.101 а) под действием эдс источника в проводах, соединяющих полупроводник с источником, и самом полупроводнике движутся полусвободные электроны. При дырочной проводимости (рис.101 б) в соединительных проводах по-прежнему движутся электроны, а в полупроводнике ток следует рассматривать как перемещение дырок. Электроны с отрицательного полюса А поступают в полупроводник и заполняют пришедшие к этому полюсу дырки. Такое объединение электронов с дырками называют рекомбинацией.

Принцип дырочной проводимости

Рис.102 - Принцип дырочной проводимости

Рассмотрим рис.102, на котором изображено для различных моментов времени несколько атомов, расположенных вдоль полупроводника. Пусть в начальный момент времени в крайнем атоме слева появилась дырка, вследствие того что из атома ушел электрон (рис.102а). Атом с дыркой имеет положительный заряд и может притянуть к себе электрон   из   соседнего атома. Если в полупроводнике действует электрическое поле (разность потенциалов), то это поле стремится двигать электроны в направлении от отрицательного потенциала к положительному

p-n-переход

p-n-Перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой.

Энергетическая диаграмма p-n-перехода. a) Состояние равновесия b) При приложенном прямом напряжении c) При приложенном обратном напряжении.

Обедненная область

Энергетическая диаграмма p-n-перехода. a) Состояние равновесия b) При приложенном прямом напряжении c) При приложенном обратном напряжении

Области пространственного заряда

В полупроводнике p-типа концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — носители заряда, хаотично двигаясь, перетекают из той области, где их больше, в ту область, где их меньше. При такой диффузии электроны и дырки переносят с собой заряд. Как следствие, область на границе станет заряженной, и область в полупроводнике p-типа, которая примыкает к границе раздела, получит дополнительный отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получит положительный заряд, приносимый дырками. Таким образом, граница раздела будет окружена двумя областями пространственного заряда противоположного знака.

Электрическое поле, возникающее вследствие образования областей пространственного заряда, вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие и перетекание зарядов прекращается.

Если приложить внешнее напряжение так, чтобы созданное им электрическое поле было направленным противоположно направлению электрического поля между областями пространственного заряда, то динамическое равновесие нарушается, и дрейфовый ток преобладает над диффузионным током, быстро нарастая с повышением напряжения. Такое подключение напряжения к p-n-переходу называется прямым смещением.

Если же внешнее напряжение приложено так, чтобы созданное им поле было одного направления с полем между областями пространственного заряда, то это приведет лишь к увеличению областей пространственного заряда, и ток через p-n-переход не идёт. Такое подключение напряжения к p-n-переходу называется обратным смещением.

Полупроводниковые диоды и триоды (транзисторы)

Односторонняя проводимость контактов двух полупроводников (или металла с полупроводником) используется для выпрямления и преобразования переменных токов. Если имеется один электронно-дырочный переход, то его действие аналогично действию двухэлектродной лампы—диода. Поэтому полупроводниковое устройство, содержащее один p-n-переход, называется полупроводниковым (кристаллическим) диодом. Полупроводниковые диоды по конструкции делятся на точечные и плоскостные.

В

Рис.103

качестве примера рассмотрим точечный германиевый диод (рис. 103), в котором тонкая вольфрамовая проволока 1 прижимается к п-германию 2 остриём, покрытым алюминием. Если через диод в прямом направлении пропустить кратковременный импульс тока, то при этом резко повышается диффузия Аl в Gе и образуется слой германия, обогащенный алюминием и обладающий p-проводимостью. На границе этого слоя образуется p-n-переход, обладающий высоким коэффициентом выпрямления. Благодаря малой емкости контактного слоя точечные диоды применяются в качестве детекторов (выпрямителей) высокочастот

П

Рис.104

ринципиальная схема плоскостного меднозакисного (купоросного) выпрямителя дана на рис. 104. На медную пластину с помощью химической обработки наращивается слой закиси меди Сu2О, который покрывается слоем серебра. Серебряный электрод служит только для включения выпрямителя в цепь. Часть слоя Сu2О, прилегающая к меди и обогащенная ею, обладает электронной проводимостью, а часть слоя Сu2О, прилегающая к Ag и обогащенная (в процессе изготовления выпрямителя) кислородом, — дырочной проводимостью. Таким образом, в толще закиси меди образуется запирающий слой с пропускным направлением тока от Сu2О к Сu (p-n).

Распространенными являются также селеновые диоды и диоды на основе арсенида галлия и карбида кремния. Рассмотренные диоды обладают рядом преимуществ по сравнению с электронными лампами (малые габаритные размеры, высокие к.п.д. и срок службы, постоянная готовность к работе и т. д.), но они очень чувствительны к температуре, поэтому интервал их рабочих температур ограничен (от –70 до +120°С). p-n-Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерирования электрических колебаний.

Для изготовления транзисторов используются германий и кремний, так как они характеризуются большой механической прочностью, химической устойчивостью и большей, чем в других полупроводниках, подвижностью носителей тока. Полупроводниковые триоды делятся на точечные и плоскостные. Первые значительно усиливают напряжение, но их выходные мощности малы из-за опасности перегрева (например, верхний предел рабочей температуры точечного германиевого триода лежит в пределах 50—80°С). Плоскостные триоды являются более мощными. Они могут быть типа р-п-р и типа п-р-п в зависимости от чередования областей с различной проводимостью.