Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ИМЭП 2012.doc
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
523.78 Кб
Скачать

Классификация видов моделирования

EMBED PBrush

Мы не будем рассматривать далее физическое моделирование, приведенное для полноты картины. В нем используется либо сама система, либо подобная ей (летательный аппарат в аэродинамической трубе).

Рассмотрим математическое моделирование – процесс установления соответствия реальной системе S математической модели M и исследование этой модели, позволяющее получить характеристики реальной системы.

Применение математического моделирования позволяет исследовать объекты, реальные эксперименты над которыми затруднены или невозможны (дорого, опасно для здоровья, однократные процессы, невозможные из-за физических или временных ограничений – находятся далеко, еще или уже не существуют и т.п.). Экономический эффект: затраты в среднем сокращаются в сотни, тысячи раз и более.

Основные способы использования математической модели таковы:

  • аналитическое исследование процессов;

  • исследование процессов при помощи численных методов;

  • имитационное моделирование.

При аналитическом моделировании процессы функционирования элементов записываются в виде математических соотношений (алгебраических, интегральных, дифференциальных, логических и т.д.). Исследование такой модели, вообще говоря, – дело математика. Математическая модель в ее изначальном виде обычно малопригодна для непосредственного исследования. Она может вообще не содержать в явном виде искомых величин. Ее необходимо преобразовать в систему соотношений относительно искомых величин, допускающую получение нужного результата чисто аналитическими методами. Под этим понимается получения явных формул вида

<искомая величина> =<аналитическое выражение>,

либо получение уравнений известного вида, решение которых также известно. В некоторых случаях возможно качественное исследование модели, при котором в явном виде можно найти лишь некоторые свойства решения.

Аналитическое решение носит характер математического доказательства. Это наиболее полное решение, к нему стремятся в первую очередь. Однако воспользоваться аналитическим исследованием удается редко, так как его получение обычно является трудной, а для моделей сложных систем -  непреодолимой задачей. Ради этого идут на упрощение, огрубление первоначальной модели (пример – линейные САУ). Если это приводит к недопустимо грубым результатам, от аналитических методов приходиться отказаться.

Более широкую сферу применения имеет исследование процессов численными методами. Численное моделирование использует методы вычислительной математики и позволяет получить лишь приближенные решения. Круг задач, решаемых численными методами, значительно шире по сравнению с аналитическими методами. Вместе с тем, решение задачи бывает менее полным, чем в аналитическом моделировании, Иногда оно сводится к небольшому числу частных случаев.

К сожалению, модели сложных систем не всегда можно привести к виду, допускающему численное решение, или это оказывается весьма сложным. Принципиальный недостаток численного моделирования заключается в том, что роль такого мощного инструмента исследования как компьютер сводится лишь к автоматической реализации выбранного численного метода. Моделирующий алгоритм в большей степени отражает именно численный метод, чем особенности модели. Поэтому при смене численного метода приходится заново перерабатывать алгоритм моделирования.

Эффект от использования компьютера неизмеримо возрастает при использовании так называемого имитационного моделирования. Имитационное моделирование – воспроизведение на компьютере (имитация) процесса функционирования исследуемой системы. Для него не требуется приведение математической модели к виду, разрешимому относительно искомых величин. Для имитационного моделирования характерно воспроизведение событий, происходящих в системе (описываемых моделью) с сохранением их логической структуры и временной последовательности. Оно позволяет узнать данные о состоянии системы или отдельных ее элементов в определенные моменты времени. Имитационное моделирование аналогично экспериментальному исследованию процессов на реальном объекте, т.е. на натуре.

Имитационное моделирование – воспроизведение на ЭВМ (имитация) процесса функционирования исследуемой системы с соблюдением логической и временной последовательности реальных событий.

Термин «имитационное моделирование» происходит от латинских слов imito и simulo. Русские эквиваленты слов, образующихся из этих корней, такие:

  • подражание, образ, копия, изображение, имитация (imito);

  • образ, подобие, воспроизведение, моделирование (simulo).

Многие ученые (напр., Ю. Адлер) считают, что сочетание слов имитация и моделирование недопустимо и термин «имитационное моделирование» - тавтология. Но, рассматривая исторический процесс формирования этого термина, надо прийти к выводу, что он определяет в моделировании такую область, которая определяет получение экспериментальной информации о сложном объекте, которую нельзя получить иначе как путем экспериментов с его моделью на ЭВМ. По Роберту Е. Шеннону имитация есть процесс создания модели реальной системы и проведение с ней экспериментов с целью осмысления поведения системы или оценки различных стратегий, которые могут быть использованы при управлении системой. Понятие имитационное свидетельствует о близости модели к реальному объекту, о воспроизводимости характеристик этого объекта, об эмпирическом характере моделирования, о возможности «проигрывания» различных вариантов (получения ответа на вопрос – что будет, если...?).

Второй определяющей чертой термина является требование повторяемости, ибо один отдельно взятый эксперимент ничего не значит. Имитационный объект имеет вероятностный характер функционирования. В отличие от других методов имитационное моделирование представляет собой очень удобный инструмент для моделирования случайных процессов. При аналитическом моделировании учет вероятностных характеристик вызывает дополнительные трудности. Для имитационного моделирования такие трудности легко преодолимы.

При имитационном моделировании тип и структура моделирующего алгоритма обусловлены не типом уравнений и не применяемым для их решения численным методом, а имитацией реальных явлений с сохранением их логической структуры, временной последовательности и состава информации о состояниях процесса.

Зависимые и независимые переменные.

Независимыми переменными называются переменные, которые варьируются исследователем, тогда как зависимые переменные - это переменные, которые измеряются или регистрируются. Может показаться, что проведение этого различия создает путаницу в терминологии, поскольку как говорят некоторые студенты "все переменные зависят от чего-нибудь". Тем не менее, однажды отчетливо проведя это различие, вы поймете его необходимость. Термины зависимая и независимая переменная применяются в основном в экспериментальном исследовании, где экспериментатор манипулирует некоторыми переменными, и в этом смысле они "независимы" от реакций, свойств, намерений и т.д. присущих объектам исследования. Некоторые другие переменные, как предполагается, должны "зависеть" от действий экспериментатора или от экспериментальных условий. Иными словами, зависимость проявляется в ответной реакции исследуемого объекта на посланное на него воздействие. Отчасти в противоречии с данным разграничением понятий находится использование их в исследованиях, где вы не варьируете независимые переменные, а только приписываете объекты к "экспериментальным группам", основываясь на некоторых их априорных свойствах. Например, если в эксперименте мужчины сравниваются с женщинами относительно числа лейкоцитов (WCC), содержащихся в крови, то Пол можно назвать независимой переменной, а WCC зависимой переменной.

Простая линейная корреляция (Пирсона r). Корреляция Пирсона (далее называемая просто корреляцией) предполагает, что две рассматриваемые переменные измерены, по крайней мере, в интервальной шкале (см. Элементарные понятия статистики). Она определяет степень, с которой значения двух переменных "пропорциональны" друг другу. Важно, что значение коэффициента корреляции не зависит от масштаба измерения. Например, корреляция между ростом и весом будет одной и той же, независимо от того, проводились измерения в дюймах и фунтах или в сантиметрах и килограммах. Пропорциональность означает просто линейную зависимость. Корреляция высокая, если на графике зависимость "можно представить" прямой линией (с положительным или отрицательным углом наклона).

Проведенная прямая называется прямой регрессии или прямой, построенной методом наименьших квадратов. Последний термин связан с тем, что сумма квадратов расстояний (вычисленных по оси Y) от наблюдаемых точек до прямой является минимальной. Заметим, что использование квадратов расстояний приводит к тому, что оценки параметров прямой сильно реагируют на выбросы.

Как интерпретировать значения корреляций. Коэффициент корреляции Пирсона (r) представляет собой меру линейной зависимости двух переменных. Если возвести его в квадрат, то полученное значение коэффициента детерминации r2) представляет долю вариации, общую для двух переменных (иными словами, "степень" зависимости или связанности двух переменных). Чтобы оценить зависимость между переменными, нужно знать как "величину" корреляции, так и ее значимость.

Значимость корреляций. Уровень значимости, вычисленный для каждой корреляции, представляет собой главный источник информации о надежности корреляции. Как объяснялось выше (см. Элементарные понятия статистики), значимость определенного коэффициента корреляции зависит от объема выборок. Критерий значимости основывается на предположении, что распределение остатков (т.е. отклонений наблюдений от регрессионной прямой) для зависимой переменной y является нормальным (с постоянной дисперсией для всех значений независимой переменной x). Исследования методом Монте-Карло показали, что нарушение этих условий не является абсолютно критичным, если размеры выборки не слишком малы, а отклонения от нормальности не очень большие. Тем не менее, имеется несколько серьезных опасностей, о которых следует знать, для этого см. следующие разделы.