
- •Оглавление
- •Глава 1. Теория вероятностей 10
- •Глава 2. Математическая статистика 44
- •Глава 3. Случайные процессы 67
- •Введение
- •Глава 1. Теория вероятностей
- •1.1. Случайные события Основные понятия теории вероятностей
- •Основные определения
- •Операции над случайными событиями
- •Элементы комбинаторики
- •Классическое определение вероятности
- •Свойства вероятности
- •Вопросы для самопроверки
- •1.2. Теоремы сложения и умножения вероятностей Теорема сложения вероятностей
- •Теорема умножения вероятностей Условная вероятность
- •Обобщенная теорема умножения вероятностей
- •Независимость случайных событий
- •Вопросы для самопроверки
- •1.3. Формула Бернулли. Формула полной вероятности Повторение испытаний. Формула Бернулли
- •Формула полной вероятности
- •Вопросы для самопроверки
- •1.4. Дискретные случайные величины
- •Закон распределения дискретной случайной величины
- •Биномиально распределенные случайные величины
- •Математическое ожидание случайной величины
- •Свойства математического ожидания
- •Дисперсия случайной величины
- •Свойства дисперсии
- •Функция распределения случайной величины
- •Свойства функции распределения
- •Вопросы для самопроверки
- •1.5. Непрерывные случайные величины
- •Плотность вероятности непрерывной случайной величины
- •Cвойства функции плотности вероятности
- •Нормальное распределение
- •Правило трех сигм
- •Независимость случайных величин. Коэффициент корреляции
- •Свойства коэффициента корреляции
- •Предельные теоремы теории вероятностей
- •Закон больших чисел в форме Чебышева
- •Следствия из закона больших чисел
- •Центральная предельная теорема (теорема Ляпунова)
- •Вопросы для самопроверки
- •Глава 2. Математическая статистика
- •2.1. Основные понятия математической статистики
- •Приемы обработки выборок
- •Построение гистограммы относительных частот
- •Точечные оценки параметров генеральной совокупности
- •Дополнительные свойства точечных оценок
- •Проверка взаимозависимости генеральных совокупностей. Выборочный коэффициент корреляции
- •Интервальные оценки параметров генеральной совокупности
- •Вопросы для самопроверки
- •2.2. Статистическая проверка статистических гипотез
- •Этапы проверки статистических гипотез
- •Проверка гипотез о параметрах генеральных совокупностей
- •Проверка гипотезы о виде распределения генеральной совокупности. Критерий согласия Пирсона
- •Вопросы для самопроверки
- •Глава 3. Случайные процессы
- •3.1. Элементы теории случайных процессов Определение случайного процесса
- •Основные характеристики случайных процессов
- •Свойства математического ожидания
- •Дисперсия случайного процесса и ее свойства
- •Корреляционная функция случайного процесса и ее свойства
- •Нормированная корреляционная функция
- •Взаимная корреляционная функция и ее свойства
- •Нормированная взаимная корреляционная функция
- •Производная и интеграл от случайной функции
- •Интеграл от случайной функции и его характеристики
- •Вопросы для самопроверки
- •Заключение
- •Библиографический список
Заключение
В математических исследованиях прикладных задач важную роль играют методы и подходы, изучаемые в теории вероятностей и математической статистике. В данном учебном пособии изложены основные понятия и определения теории вероятностей, важнейшие числовые (математическое ожидание, дисперсия) характеристики дискретных случайных величин и распределенные (функция распределения, плотность вероятности) характеристики непрерывных случайных величин. Большое внимание уделено исследованию корреляционного взаимодействия случайных величин.
В учебном пособии рассмотрены следующие методики: обработка статистических данных, построение выборочного коэффициента корреляции, получение точечных и интервальных оценок неизвестных параметров, статистическая проверка статистических гипотез, исследование случайных процессов.
Для более глубокого изучения задач и методов теории вероятностей и математической статистики рекомендуется обратиться к учебникам [5, 6], приведенным в библиографическом списке.
Библиографический список
1. Тимошенко Е. И. Теория вероятностей : учеб. пособие / Е. И. Тимошенко, Ю. Е. Воскобойников. Новосибирск : НГАС, 1998. – 68 с.
2. Воскобойников Ю. Е. Математическая статистика : учеб. пособие / Ю. Е. Воскобойников, Е. И. Тимошенко. – Новосибирск : Наука, 1996. – 99 с.
3. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике / В. Е. Гмурман. – М. : Высш. шк., 1979. – 400 с.
4. Гмурман В. Е. Теория вероятностей и математическая статистика / В. Е. Гмурман. – М. : Высш. шк., 1997. – 479 с.
5. Боровков А. А. Теория вероятностей / А. А. Боровков. – М. : Наука, 1976. – 354 с.
6. Боровков А. А. Математическая статистика / А. А. Боровков. – М. : Наука, 1984. – 472 с.