- •1.1. Цели и задачи учебной дисциплины
- •1.2. Общие методические указания
- •2. Содержание теоретического раздела дисциплины
- •2.1. Общие понятия. Первое начало термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.2. Параметры идеального газа
- •Методические указания
- •Вопросы для самопроверки
- •2.3. Второе начало термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.4. Дифференциальные уравнения термодинамики
- •Методические указания
- •2.5. Термодинамические процессы идеальных газов
- •Методические указания
- •Вопросы для самопроверки
- •2.6. Реальные газы и пары. Водяной пар
- •Методические указания
- •Методические указания
- •Вопросы для самопроверки
- •Методические указания
- •Вопросы для самопроверки
- •2.9. Процессы компрессоров
- •2.10. Газовые циклы
- •Методические указания
- •Вопросы для самопроверки
- •2.11. Паровые циклы
- •Методические указания
- •Вопросы для самопроверки
- •2.12. Циклы холодильных установок и теплотрансформаторов
- •Методические указания
- •2.13. Элементы химической термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.14. Методы непосредственного преобразования теплоты в электроэнергию
- •Методические указания
- •Вопросы для самопроверки
- •2.15. Основные положения теории тепломассообмена
- •Вопросы для самопроверки
- •2.16. Теплопроводность при стационарном тепловом режиме
- •Методические указания
- •Вопросы для самопроверки
- •2.17. Теплопроводность при нестационарном тепловом режиме
- •Методические указания
- •Вопросы для самопроверки
- •2.18. Основные положения конвективного теплообмена
- •Методические указания
- •Вопросы для самопроверки
- •2.19. Основы метода подобия и моделирования
- •Методические указания
- •Вопросы для самопроверки
- •2.20. Общие вопросы расчета конвективной теплоотдачи
- •Методические указания
- •Вопросы для самопроверки
- •2.21. Теплоотдача при вынужденном продольном омывании плоской поверхности
- •Методические указания
- •Вопросы для самопроверки
- •2.22. Теплоотдача при вынужденном движении жидкости в трубах и при поперечном омывании труб и пучков труб
- •Методические указания
- •Вопросы для самопроверки
- •2.23. Теплоотдача при свободном движении жидкости
- •Методические указания
- •Вопросы для самопроверки
- •2.24. Отдельные задачи конвективного теплообмена в однородной среде
- •Методические указания
- •Вопросы для самопроверки
- •2.25. Теплообмен при конденсации чистого пара
- •Методические указания
- •Вопросы для самопроверки
- •2.26. Теплообмен при кипении однокомпонентных жидкостей
- •Методические указания
- •Вопросы для самопроверки
- •2.27. Конвективный тепло- и массообмен
- •Методические указания
- •Вопросы для самопроверки
- •2.28. Основные законы теплового излучения
- •Методические указания
- •Вопросы для самопроверки
- •2.29. Теплообмен излучением между телами, разделенными прозрачной средой
- •Методические указания
- •Вопросы для самопроверки
- •2.30. Теплообменные аппараты
- •Методические указания
- •Вопросы для самопроверки
- •3. Содержание практического раздела дисциплины
- •3.1. Общие методические указания
- •3.2. Тематика практических занятий
- •3.3. Перечень лабораторных работ
- •Задание № 2 Расчет параметров и процессов изменения состояния водяного пара Задача
- •Задача № 3
- •Задача № 4
- •Задание № 4 Процессы компрессоров Задача
- •Контрольные вопросы
- •Задание 2
- •Задание № 2 Способы повышения кпд паротурбинных установок
- •Задача № 2
- •Задача № 3
- •Задание № 2 Термодинамический анализ циклов холодильных установок
- •Задача № 1
- •Задача № 2
- •Задание № 3 Расчет стационарной теплопроводности и теплопередачи
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача №4
- •Задача № 5
- •Задание № 4 Расчет нестационарной теплопроводности
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача№ 4
- •Задача № 5
- •Контрольные вопросы
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 2 Расчет теплоотдачи при вынужденной конвекции жидкости
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 3 Расчет теплоотдачи при фазовых превращениях
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 4 Теплообмен излучением
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 5 Теплообменные аппараты
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Контрольные вопросы
- •Библиографический список
2.12. Циклы холодильных установок и теплотрансформаторов
Обратный цикл Карно. Холодильный коэффициент и эксергетический КПД. Требования, предъявляемые к рабочим телам холодильных установок. Схема и теоретический цикл газовой холодильной установки. Способы увеличения эксергетического КПД и холодопроизводительности. Принципиальная схема и цикл парокомпрессионной холодильной установки.
Пароэжекторная холодильная установка. Абсорбционная холодильная установка. Принципиальные схемы и изображение циклов в р-v и T-s - диаграммах.
Принципиальная схема теплового насоса. Понятие о коэффициенте теплоиспользования.
Методические указания
При изучении циклов различных холодильных установок нужно обратить внимание на то, что как для тепловых двигателей, так и для холодильных машин эталоном является цикл Карно. Термический КПД любого цикла сравнивается с КПД цикла Карно в этих же пределах температур. Для холодильных установок холодильником является внешняя атмосфера или вода, у которой температура ниже температуры холодильника, а источником теплоты - содержимое холодильной камеры, у которого температура выше хладоагента. Поэтому эквивалентным циклом Карно для холодильной установки будет цикл, осуществляемый- между температурами холодильника (воздух, вода) и источника (охлаждаемый объем холодильной камеры). Знание классификации и принципиальных схем Холодильных установок позволяет правильно выбирать соответствующий тип холодильной установки. Усвоив учебный материал, студент сможет анализировать с помощью T-s- диаграммы работу и расчеты этого цикла. В паровой компрессионной холодильной установке не применяется расширительный цилиндр (детандер), а рабочее тело дросселируется в регулировочном вентиле. Это ведет к потере холодопроизводительности, но, упрощая установку, позволяет легко регулировать давление пара и получать низкую температуру в охладителе. Тепловые насосы также работают по обратному циклу. В них теплота, забираемая от окружающей среды, с помощью затраченной работы повышает энергетический уровень рабочего тела и при более высокой температуре отдается внешнему потребителю. Необходимо понять принципиальную схему и работу теплового насоса и уяснить понятие коэффициента теплоиспользования. [4, с. 344-367].
Вопросы для самопроверки
Классификация холодильных установок.
Что называется холодильным коэффициентом?
Приведите принципиальную схему воздушной холодильной установки и опишите ее работу.
Изобразите идеальный цикл воздушной холодильной установки и опишите процессы, осуществляемые в ней.
Приведите принципиальную схему работы паровой компрессионной холодильной установки и опишите ее работу.
Чем отличается работа теплового насоса от работы холодильных установок?
2.13. Элементы химической термодинамики
Первое начало термодинамики в термохимии. Тепловой эффект реакции. Закон Гесса и его следствия. Зависимость теплового эффекта реакции от температуры. Стандартный тепловой эффект. Второй закон термодинамики в термохимии. Закон действующих масс. Степень диссоциации. Термодинамические свойства диссоциирующих газов. Константа равновесия и максимальная работа реакции. Зависимость константы равновесия от давления и температуры. Тепловая теорема Нернста. Абсолютная энтропия. Стандартные значения термодинамических функций веществ.
