
- •1.1. Цели и задачи учебной дисциплины
- •1.2. Общие методические указания
- •2. Содержание теоретического раздела дисциплины
- •2.1. Общие понятия. Первое начало термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.2. Параметры идеального газа
- •Методические указания
- •Вопросы для самопроверки
- •2.3. Второе начало термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.4. Дифференциальные уравнения термодинамики
- •Методические указания
- •2.5. Термодинамические процессы идеальных газов
- •Методические указания
- •Вопросы для самопроверки
- •2.6. Реальные газы и пары. Водяной пар
- •Методические указания
- •Методические указания
- •Вопросы для самопроверки
- •Методические указания
- •Вопросы для самопроверки
- •2.9. Процессы компрессоров
- •2.10. Газовые циклы
- •Методические указания
- •Вопросы для самопроверки
- •2.11. Паровые циклы
- •Методические указания
- •Вопросы для самопроверки
- •2.12. Циклы холодильных установок и теплотрансформаторов
- •Методические указания
- •2.13. Элементы химической термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.14. Методы непосредственного преобразования теплоты в электроэнергию
- •Методические указания
- •Вопросы для самопроверки
- •2.15. Основные положения теории тепломассообмена
- •Вопросы для самопроверки
- •2.16. Теплопроводность при стационарном тепловом режиме
- •Методические указания
- •Вопросы для самопроверки
- •2.17. Теплопроводность при нестационарном тепловом режиме
- •Методические указания
- •Вопросы для самопроверки
- •2.18. Основные положения конвективного теплообмена
- •Методические указания
- •Вопросы для самопроверки
- •2.19. Основы метода подобия и моделирования
- •Методические указания
- •Вопросы для самопроверки
- •2.20. Общие вопросы расчета конвективной теплоотдачи
- •Методические указания
- •Вопросы для самопроверки
- •2.21. Теплоотдача при вынужденном продольном омывании плоской поверхности
- •Методические указания
- •Вопросы для самопроверки
- •2.22. Теплоотдача при вынужденном движении жидкости в трубах и при поперечном омывании труб и пучков труб
- •Методические указания
- •Вопросы для самопроверки
- •2.23. Теплоотдача при свободном движении жидкости
- •Методические указания
- •Вопросы для самопроверки
- •2.24. Отдельные задачи конвективного теплообмена в однородной среде
- •Методические указания
- •Вопросы для самопроверки
- •2.25. Теплообмен при конденсации чистого пара
- •Методические указания
- •Вопросы для самопроверки
- •2.26. Теплообмен при кипении однокомпонентных жидкостей
- •Методические указания
- •Вопросы для самопроверки
- •2.27. Конвективный тепло- и массообмен
- •Методические указания
- •Вопросы для самопроверки
- •2.28. Основные законы теплового излучения
- •Методические указания
- •Вопросы для самопроверки
- •2.29. Теплообмен излучением между телами, разделенными прозрачной средой
- •Методические указания
- •Вопросы для самопроверки
- •2.30. Теплообменные аппараты
- •Методические указания
- •Вопросы для самопроверки
- •3. Содержание практического раздела дисциплины
- •3.1. Общие методические указания
- •3.2. Тематика практических занятий
- •3.3. Перечень лабораторных работ
- •Задание № 2 Расчет параметров и процессов изменения состояния водяного пара Задача
- •Задача № 3
- •Задача № 4
- •Задание № 4 Процессы компрессоров Задача
- •Контрольные вопросы
- •Задание 2
- •Задание № 2 Способы повышения кпд паротурбинных установок
- •Задача № 2
- •Задача № 3
- •Задание № 2 Термодинамический анализ циклов холодильных установок
- •Задача № 1
- •Задача № 2
- •Задание № 3 Расчет стационарной теплопроводности и теплопередачи
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача №4
- •Задача № 5
- •Задание № 4 Расчет нестационарной теплопроводности
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача№ 4
- •Задача № 5
- •Контрольные вопросы
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 2 Расчет теплоотдачи при вынужденной конвекции жидкости
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 3 Расчет теплоотдачи при фазовых превращениях
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 4 Теплообмен излучением
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 5 Теплообменные аппараты
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Контрольные вопросы
- •Библиографический список
Вопросы для самопроверки
Назначение компрессоров.
Принцип действия поршневого компрессора и изображение работы компрессора в р-υ - диаграмме.
Какой процесс сжатия наиболее выгодный?
Можно ли получить газ высокого давления в одноступенчатом компрессоре?
Как определяется работа, затрачиваемая на привод компрессора?
Чем вызвано применение нескольких ступеней сжатия в многоступенчатом компрессоре?
Как определяется эффективная мощность, затрачиваемая на привод компрессора?
Как определяется внутренний относительный КПД компрессора?
Расчет отводимой теплоты при охлаждении компрессора.
2.9. Процессы компрессоров
Компрессор. Работа, затрачиваемая на привод компрессора. Изотермическое, адиабатное и политропное сжатие. Многоступенчатый компрессор. Оптимальное распределение давлений по ступеням. Изображение в p-v и T-s -диаграммах процессов в компрессорах для одно- и двухступенчатого сжатия. Определение эффективной мощности, затрачиваемой на привод компрессора и отводимой при охлаждении теплоты. Понятия эксергетического, внутреннего относительного, изотермического КПД компрессора.
2.10. Газовые циклы
Циклы двигателей внутреннего сгорания. Циклы с подводом тепла при постоянном давлении, при постоянном объеме, со смешанным подводом тепла. Сравнение циклов по термическому КПД. Зависимость термического КПД от средних температур подвода и отвода тепла. Расход тепла и топлива, эффективный КПД двигателя внутреннего сгорания.
Циклы газотурбинных двигателей и установок. Схема и цикл газотурбинной установки с подводом тепла при постоянном давлении. Термический КПД обратимого цикла. Действительный цикл газотурбинной установки и система КПД для оценки потерь в ней. Влияние степени повышения давления воздуха в компрессоре на термический КПД цикла, на эффективный КПД установки. Методы повышения КПД: применение регенерации тепла, многоступенчатого сжатия воздуха в компрессоре и ступенчатого расширения продуктов сгорания в турбине. Замкнутые циклы газотурбинных установок. Циклы воздушно - реактивный и ракетных двигателей.
Методические указания
При термодинамическом исследовании циклов ДВС делается допущение о применимости в качестве рабочего тела идеального газа с постоянной теплоемкостью, а также допущение о термодинамической обратимости процессов, составляющих цикл. В двигателях внутреннего сгорания осуществляются циклы с подводом теплоты при постоянном объеме, с подводом теплоты при постоянном давении и цикл со смешанным подводом теплоты. Необходимо уметь изобразить любой цикл в р-v и T-s -диаграммах, определить подведенную и отведенную теплоту, работу и термический КПД цикла. При сравнении тепловой экономичности рассматриваемых циклов при одинаковых степенях сжатия наиболее экономичным будет цикл с изохорным подводом теплоты. Если же сравнение тепловой экономичности производить при одинаковых максимальных давлениях, то максимальный КПД имеет цикл с изобарным подводом теплоты, а наименьший - цикл с изохорным подводом теплоты.
При изучении циклов газотурбинных установок обратить внимание на преимущества их перед поршневыми ДВС. Необходимо разобраться в принципе работы газотурбинных установок, знать схемы установок, уметь анализировать их работу, используя диаграммы p-υ и T-s.
Уметь вычислить термический КПД обратимого цикла, внутренний КПД действительного цикла; эффективный КПД газотурбинной установки. Обратить внимание на физический смысл этих КПД. Помнить, что термический коэффициент полезного действия повышается за счет введения регенерации теплоты, ступенчатого сжатия и ступенчатого подвода теплоты. [1, с. 264-285; с. 252-258].