
- •1.1. Цели и задачи учебной дисциплины
- •1.2. Общие методические указания
- •2. Содержание теоретического раздела дисциплины
- •2.1. Общие понятия. Первое начало термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.2. Параметры идеального газа
- •Методические указания
- •Вопросы для самопроверки
- •2.3. Второе начало термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.4. Дифференциальные уравнения термодинамики
- •Методические указания
- •2.5. Термодинамические процессы идеальных газов
- •Методические указания
- •Вопросы для самопроверки
- •2.6. Реальные газы и пары. Водяной пар
- •Методические указания
- •Методические указания
- •Вопросы для самопроверки
- •Методические указания
- •Вопросы для самопроверки
- •2.9. Процессы компрессоров
- •2.10. Газовые циклы
- •Методические указания
- •Вопросы для самопроверки
- •2.11. Паровые циклы
- •Методические указания
- •Вопросы для самопроверки
- •2.12. Циклы холодильных установок и теплотрансформаторов
- •Методические указания
- •2.13. Элементы химической термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.14. Методы непосредственного преобразования теплоты в электроэнергию
- •Методические указания
- •Вопросы для самопроверки
- •2.15. Основные положения теории тепломассообмена
- •Вопросы для самопроверки
- •2.16. Теплопроводность при стационарном тепловом режиме
- •Методические указания
- •Вопросы для самопроверки
- •2.17. Теплопроводность при нестационарном тепловом режиме
- •Методические указания
- •Вопросы для самопроверки
- •2.18. Основные положения конвективного теплообмена
- •Методические указания
- •Вопросы для самопроверки
- •2.19. Основы метода подобия и моделирования
- •Методические указания
- •Вопросы для самопроверки
- •2.20. Общие вопросы расчета конвективной теплоотдачи
- •Методические указания
- •Вопросы для самопроверки
- •2.21. Теплоотдача при вынужденном продольном омывании плоской поверхности
- •Методические указания
- •Вопросы для самопроверки
- •2.22. Теплоотдача при вынужденном движении жидкости в трубах и при поперечном омывании труб и пучков труб
- •Методические указания
- •Вопросы для самопроверки
- •2.23. Теплоотдача при свободном движении жидкости
- •Методические указания
- •Вопросы для самопроверки
- •2.24. Отдельные задачи конвективного теплообмена в однородной среде
- •Методические указания
- •Вопросы для самопроверки
- •2.25. Теплообмен при конденсации чистого пара
- •Методические указания
- •Вопросы для самопроверки
- •2.26. Теплообмен при кипении однокомпонентных жидкостей
- •Методические указания
- •Вопросы для самопроверки
- •2.27. Конвективный тепло- и массообмен
- •Методические указания
- •Вопросы для самопроверки
- •2.28. Основные законы теплового излучения
- •Методические указания
- •Вопросы для самопроверки
- •2.29. Теплообмен излучением между телами, разделенными прозрачной средой
- •Методические указания
- •Вопросы для самопроверки
- •2.30. Теплообменные аппараты
- •Методические указания
- •Вопросы для самопроверки
- •3. Содержание практического раздела дисциплины
- •3.1. Общие методические указания
- •3.2. Тематика практических занятий
- •3.3. Перечень лабораторных работ
- •Задание № 2 Расчет параметров и процессов изменения состояния водяного пара Задача
- •Задача № 3
- •Задача № 4
- •Задание № 4 Процессы компрессоров Задача
- •Контрольные вопросы
- •Задание 2
- •Задание № 2 Способы повышения кпд паротурбинных установок
- •Задача № 2
- •Задача № 3
- •Задание № 2 Термодинамический анализ циклов холодильных установок
- •Задача № 1
- •Задача № 2
- •Задание № 3 Расчет стационарной теплопроводности и теплопередачи
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача №4
- •Задача № 5
- •Задание № 4 Расчет нестационарной теплопроводности
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача№ 4
- •Задача № 5
- •Контрольные вопросы
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 2 Расчет теплоотдачи при вынужденной конвекции жидкости
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 3 Расчет теплоотдачи при фазовых превращениях
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 4 Теплообмен излучением
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 5 Теплообменные аппараты
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Контрольные вопросы
- •Библиографический список
Вопросы для самопроверки
Что такое термодинамический цикл?
В чем состоят термическая и механическая необратимости процессов?
Что такое эксергия?
Что такое прямой и обратный циклы Карно?
Что называется термическим КПД и холодильным коэффициентом произвольного цикла? Чему они равны для цикла Карно?
Почему обратный цикл Карно является самым эффективным среди других циклов, осуществляемых в заданном интервале температур?
В чем сущность второго закона термодинамики?
Приведите аналитическое выражение второго закона термодинамики для обратимых и необратимых процессов.
Как изменяется энтропия изолированной системы при протекании в ней обратимых и необратимых процессов?
2.4. Дифференциальные уравнения термодинамики
Основные дифференциальные уравнения термодинамики. Связь между термическими и калорическими величинами в переменных v, Т и р, Т. Энергии Гиббса и Гельмгольца и их свойства. Зависимость теплоемкостей Ср и с, от объема и давления. Уравнения Максвелла.
Методические указания
Дифференциальные уравнения термодинамики являются теоретическим фундаментом для развития термодинамики как науки. По известному уравнению состояния газа с помощью дифференциальных связей можно найти зависимость теплоемкостей Ср и Сv, от давления и объема. Дифференциальные связи позволяют выражать Одни термодинамические функции через другие, в частности, получить дифференциальные уравнения, связывающие калорические параметры (u, h, s) и термические (р, v, Т). С их помощью, используя эксперимент, определяется физическая сущность явлений и процессов, протекающих в природе. Студент должен усвоить методику получения основных дифференциальных соотношений термодинамики и способы их применения.[1, с. 102-108].
2.5. Термодинамические процессы идеальных газов
Термодинамические процессы изменения состояния идеальных газов. Общие вопросы исследования процессов изменения состояния' идеального газа: изохорного, изобарного, изотермического, адиабатного. Политропные процессы. Основные термодинамические процессы как частный случай политропного процесса. Определение показателя политропы и теплоемкости политропного процесса. Определение теплоты и работы процесса. Изображение процессов в p-v и T-s-диаграммах.
Методические указания
Общий метод исследования термодинамических процессов является универсальным. Он не зависит от природы рабочего тела. Метод базируется на применении уравнений первого и второго законов термодинамики, справедливых для любых рабочих тел:
На основании этих уравнений можно определить теплоту и работу любого термодинамического процесса. Студенту необходимо уяснить понятие политропного процесса, под которым понимается любой термодинамический процесс идеального газа с постоянной теплоемкостью с, (или показателем политропы п) в этом процессе. Уяснить общность политропного процесса, выраженного уравнением pvn=const, получить из него уравнения основных процессов (изохорного, изотермического, изобарного, адиабатного). Знать определение показателя политропы п и теплоемкости политропного процесса Cn, как обобщающих величин, из которых получаются частные значения их для основных процессов.: [1, с. 32-36].