
- •1.1. Цели и задачи учебной дисциплины
- •1.2. Общие методические указания
- •2. Содержание теоретического раздела дисциплины
- •2.1. Общие понятия. Первое начало термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.2. Параметры идеального газа
- •Методические указания
- •Вопросы для самопроверки
- •2.3. Второе начало термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.4. Дифференциальные уравнения термодинамики
- •Методические указания
- •2.5. Термодинамические процессы идеальных газов
- •Методические указания
- •Вопросы для самопроверки
- •2.6. Реальные газы и пары. Водяной пар
- •Методические указания
- •Методические указания
- •Вопросы для самопроверки
- •Методические указания
- •Вопросы для самопроверки
- •2.9. Процессы компрессоров
- •2.10. Газовые циклы
- •Методические указания
- •Вопросы для самопроверки
- •2.11. Паровые циклы
- •Методические указания
- •Вопросы для самопроверки
- •2.12. Циклы холодильных установок и теплотрансформаторов
- •Методические указания
- •2.13. Элементы химической термодинамики
- •Методические указания
- •Вопросы для самопроверки
- •2.14. Методы непосредственного преобразования теплоты в электроэнергию
- •Методические указания
- •Вопросы для самопроверки
- •2.15. Основные положения теории тепломассообмена
- •Вопросы для самопроверки
- •2.16. Теплопроводность при стационарном тепловом режиме
- •Методические указания
- •Вопросы для самопроверки
- •2.17. Теплопроводность при нестационарном тепловом режиме
- •Методические указания
- •Вопросы для самопроверки
- •2.18. Основные положения конвективного теплообмена
- •Методические указания
- •Вопросы для самопроверки
- •2.19. Основы метода подобия и моделирования
- •Методические указания
- •Вопросы для самопроверки
- •2.20. Общие вопросы расчета конвективной теплоотдачи
- •Методические указания
- •Вопросы для самопроверки
- •2.21. Теплоотдача при вынужденном продольном омывании плоской поверхности
- •Методические указания
- •Вопросы для самопроверки
- •2.22. Теплоотдача при вынужденном движении жидкости в трубах и при поперечном омывании труб и пучков труб
- •Методические указания
- •Вопросы для самопроверки
- •2.23. Теплоотдача при свободном движении жидкости
- •Методические указания
- •Вопросы для самопроверки
- •2.24. Отдельные задачи конвективного теплообмена в однородной среде
- •Методические указания
- •Вопросы для самопроверки
- •2.25. Теплообмен при конденсации чистого пара
- •Методические указания
- •Вопросы для самопроверки
- •2.26. Теплообмен при кипении однокомпонентных жидкостей
- •Методические указания
- •Вопросы для самопроверки
- •2.27. Конвективный тепло- и массообмен
- •Методические указания
- •Вопросы для самопроверки
- •2.28. Основные законы теплового излучения
- •Методические указания
- •Вопросы для самопроверки
- •2.29. Теплообмен излучением между телами, разделенными прозрачной средой
- •Методические указания
- •Вопросы для самопроверки
- •2.30. Теплообменные аппараты
- •Методические указания
- •Вопросы для самопроверки
- •3. Содержание практического раздела дисциплины
- •3.1. Общие методические указания
- •3.2. Тематика практических занятий
- •3.3. Перечень лабораторных работ
- •Задание № 2 Расчет параметров и процессов изменения состояния водяного пара Задача
- •Задача № 3
- •Задача № 4
- •Задание № 4 Процессы компрессоров Задача
- •Контрольные вопросы
- •Задание 2
- •Задание № 2 Способы повышения кпд паротурбинных установок
- •Задача № 2
- •Задача № 3
- •Задание № 2 Термодинамический анализ циклов холодильных установок
- •Задача № 1
- •Задача № 2
- •Задание № 3 Расчет стационарной теплопроводности и теплопередачи
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача №4
- •Задача № 5
- •Задание № 4 Расчет нестационарной теплопроводности
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача№ 4
- •Задача № 5
- •Контрольные вопросы
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 2 Расчет теплоотдачи при вынужденной конвекции жидкости
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 3 Расчет теплоотдачи при фазовых превращениях
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 4 Теплообмен излучением
- •Задача № 1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Задание № 5 Теплообменные аппараты
- •Задача №1
- •Задача № 2
- •Задача № 3
- •Задача № 4
- •Задача № 5
- •Контрольные вопросы
- •Библиографический список
Задача № 2
В трубчатом воздухоподогревателе воздух нагревается за счет тепла дымовых газов. Дымовые газы движутся по трубам, поперечный поток воздуха омывает трубный пучок.
Расход воздуха (Gв), температуры воздуха на входе (t'2) и на выходе (t''2), расход дымовых газов (Gг), температура дымовых газов на входе (t'1)даны в табл.22 по вариантам.
Принять коэффициент теплопередачи от дымовых газов к воздуху через стенку трубы К=30 Вт/(м2 ·К). Потерями тепла в окружающую среду пренебречь.
Рассчитать температуру дымовых газов на выходе (t''1) и площадь поверхности нагрева воздухоподогревателя (F,м2).
Таблица 22
№ вар |
2 |
7 |
12 |
17 |
22 |
Gв, кг/с |
21 |
25 |
30 |
35 |
40 |
t2' ,оС |
30 |
25 |
20 |
35 |
15 |
t2'', оС |
250 |
240 |
270 |
290 |
250 |
Gв, кг/ч |
20 |
30 |
40 |
45 |
42 |
t'1, оС |
400 |
370 |
390 |
450 |
380 |
Задача № 3
В противоточном теплообменнике типа «труба в трубе» горячее трансформаторное масло охлаждается водой. Трансформаторное масло движется по внутренне латунной трубе с диаметром d2/d1=14/12 мм. Вода движется по кольцевому зазору. Внутренний диаметр наружной трубы d3=22 мм. Скорость масла (w1) и температуры его на входе (t'1) и на выходе (t1'') из теплообменника, а также скорость воды (w2) и температура воды на входе в теплообменник (t2') даны в табл.23 по вариантам.
Принять средний коэффициент теплопередачи от масла к воде через стенку трубы К=230 Вт/(м2 ·К). Потерями тепла в окружающую среду пренебречь.
Определить температуру воды на выходе из теплообменника (t2''), площадь поверхности теплообмена (F,м2) и общую длину теплообменной поверхности (м).
Представить график изменения температуры теплоносителей вдоль поверхности теплообмена.
Таблица 23
№ вар |
3 |
8 |
13 |
18 |
23 |
w1, м/с |
4 |
3 |
3,5 |
2 |
2,5 |
t1' ,оС |
100 |
110 |
90 |
80 |
120 |
t1'', оС |
60 |
70 |
50 |
40 |
70 |
t2' ,оС |
20 |
10 |
15 |
25 |
20 |
w2, м/с |
2,5 |
2 |
2,2 |
1,7 |
1,9 |
Задача № 4
В трубчатом испарителе воды горячим теплоносителем является технологический сухой насыщенный пар, подаваемый в межтрубное пространство при давлении р1.За счет тепла конденсации пара в трубах кипит и испаряется вода при давлении р2. На вход испарителя подается сухой насыщенный пар при давлении р1 и кипящая вода при давлении р2, на выходе из испарителя – конденсат с температурой насыщения (ts1) при давлении р1 и сухой насыщенный пар с температурой (ts2) при давлении р2. Давления p1, p2 и расход воды (G2) даны в табл.24 по вариантам.
Принять средний коэффициент теплопередачи от пара к воде через стенку трубы К=2200 Вт/(м2 ·К). Потерями тепла в окружающую среду пренебречь.
Определить расход пара (G1, кг/ч) и площадь поверхности теплообмена испарителя (F,м2).
Представить график изменения температур теплоносителей вдоль поверхности теплообмена.
Таблица 24
№ вар |
4 |
9 |
14 |
19 |
24 |
p1, бар |
2 |
3 |
3,6 |
4 |
5 |
p2, бар |
1 |
1,5 |
2 |
2,2 |
3 |
G2, кг/ч |
1000 |
800 |
1200 |
1300 |
900 |