
- •1. Загальні поняття фізики
- •Предмет і метод фізики
- •Фізика та її зв’язок з суміжними науками
- •Фізика і технічний процес
- •1.1.3. Фундаментальні типи взаємодії у природі
- •1.1.4. Фундаментальні закони збереження
- •1.1.5. Основні розділи фізики
- •2. Основи кінематики
- •2.1. Кінематика поступального і обертального руху
- •2.1.2.Пoняття мaтepiaльнoї тoчки тa aбcoлютнo твepдoгo тiлa
- •2.1.4. Система вiдлiку. Положення матеріальної тoчки у просторі
- •2.1.5.Швидкість поступального руху. Закон додавання швидкостей
- •2.1.7. Кінематика обертального руху
- •3. Динаміка матеріальної точки
- •3.1. Динаміка поступального руху
- •3.1.1. Класична механіка та межі її використання
- •3.1.2. Поняття сили, маси, імпульсу. Перший, другий, третій закони Ньютона
- •3.1.3. Принцип відносності Галілея
- •3.1.4. Закон збереження імпульсу
- •3.1.5. Реактивний рух
- •3.2. Енергія і робота
- •3.2.1. Енергія, робота, потужність
- •3.2.2. Енергія кінетична. Енергія потенціальна
- •3.2.3.Закон збереження енергії
- •3.2.4. Зіткнення двох тіл
- •3.2.5.Рух тіла відносно неінерціальної системи відліку. Сили інерції. Відцентрова сила. Сила Коріоліса
- •4. Обертальний рух твердого тіла
- •4.1. Момент сили. Момент імпульсу
- •4.1.1. Тверде тіло як система матеріальних точок
- •4.1.2.А. Момент сили і пари сил відносно точки
- •4.1.2.Б. Момент сили відносно осі
- •4.1.2.В. Момент імпульсу матеріальної точки
- •4.1.3. Закон збереження моменту імпульсу
- •4.1.4. Основне рівняння динаміки обертального руху
- •4.2. Момент інерції. Гіроскоп
- •4.2.1. Вільні осі. Головні осі інерції
- •4.2.2. Моменти інерції різних тіл
- •4.2.3. Кінетична енергія обертального руху
- •4.2.4. Гіроскоп. Гіроскопічний ефект. Процесія гіроскопа
- •4.3. Всесвітнє тяжіння
- •4.3.1. Закон всесвітнього тяжіння. Вільне падіння тіл
- •4.3.2. Гравітаційне поле і його характеристики
- •4.3.3. Маса гравітаційна і маса інертна
- •4.3.4. Перша та друга космічні швидкості
- •5. Релятивістська механіка
- •5.1. Елементи релятивістської механіки
- •5.1.1. Зв’язок і відхилення від законів Ньютона
- •5.1.2. Постулати Ейнштейна
- •5.1.3. Перетворення Лоренца
- •5.1.4. Висновки з перетворень Лоренца
- •5.1.5.Основи релятивістської динаміки: імпульс, маса, зв’язок маси і енергії, частинка з нульовою масою
- •6. Коливальний рух
- •6.1. Вільні незгасаючі гармонічні коливання
- •6.1.1. Загальні відомості про коливання
- •6.1.2. Вільні незгасаючі гармонічні коливання
- •6.1.3. Енергія коливального руху
- •6.2. Складання коливань
- •6.2.1. Векторна діаграма. Складання коливань одного напрямку
- •6.2.2. Складання взаємно-перпендикулярних коливань
- •6.3. Згасаючі та вимушені коливання
- •6.3.1. Згасаючі коливання. Добротність
- •6.3.2. Вимушені коливання
- •6.3.3. Резонанс
- •1.1.2. Макроскопічні параметри і їх мікроскопічна трактовка
- •1.1.3. Закони ідеальних газів
- •1.1.4. Рівняння стану ідеального газу
- •1.1.5. Основне рівняння мкт газів
- •1.1.6. Температура. Поняття температури
- •1.2. Перший закон термодинаміки
- •1.2.1. Внутрішня енергія термодинамічної системи
- •1.2.2. Теплота. Робота. Теплоємність
- •1.2.2. Перший закон термодинаміки
- •1.2.4. Ізопроцеси в ідеальних газах
- •1.2.4.А. Ізотермічний
- •1.2.4.Б. Ізобарний
- •1.2.4.В. Ізохорний
- •1.2.4.Г. Адіабатичний
- •1.3. Другий закон термодинаміки
- •1.3.1. Кругові процеси
- •1.3.2. Цикли Карно
- •1.3.2.А. Прямий обернений цикл Карно
- •1.3.2.Б. Обернений рівновісний цикл Карно
- •1.3.2.В. Необернений цикл Карно
- •1.3.3. Нерівність Клаузіуса
- •1.3.4. Ентропія та її властивості
- •1.3.5. Другий закон термодинаміки
- •1.4. Термодинамічний потенціал. Теорема Нернста
- •1.4.1. Внутрішня енергія
- •1.4.2. Енергія Гальм-Гольца
- •1.4.3. Ентальпія
- •1.4.4. Потенціал Гіббса
- •1.4.4. Теорема Нернста. Третій закон термодинаміки
- •2.1. Кристали та їх властивості
- •2.1.1. Будова кристалу
- •2.1.2. Класи і типи кристалів
- •2.1.3. Дефекти в кристалах
- •2.1.4. Теплоємність кристалів
- •2.2. Рідини та їх властивості
- •2.2.1. Будова рідини
- •2.2.2. Поверхневий натяг
- •2.2.3. Явища на межі рідини і твердого тіла
- •2.2.4. Капілярні явища
- •2.3. Фазові переходи
- •2.3.1. Фаза, фазові переходи
- •2.3.2. Випаровування, плавлення, конденсація, кристалізація
- •2.3.3. Рівняння Клайперона-Клаузіуса
- •2.3.4. Потрійна точка. Діаграма стану
- •2.4. Розподіл молекул газу за енергіями
- •2.4.1. Закон розподілу Больцмана
- •2.4.2. Закон розподілу Максвела
- •2.4.3. Закон розподілу Максвела-Больцмана
- •Частина 1. Електростатика і магнетизм Розділ 1. Електростатичне поле у вакуумі
- •§1. Постійний електричний струм
- •§2. Опис векторного поля
- •§ 3. Обчислення напруженості поля на підставі теореми Гауса
- •Розділ 2. Діелектрик в зовнішньому електричному полі
- •§4. Діелектрик в зовнішньому електричному полі
- •Розділ 3. Провідник в зовнішньому електростатичному полі
- •§5. Провідник в зовнішньому електростатичному полі
- •Розділ 4. Енергія електростатичного поля
- •§6. Енергія електростатичного поля
- •Розділ 5. Постійний електричний струм
- •§7. Постійний електричний струм та його характеристики.
- •§8. Класична електронна теорія електропровідності металів
- •Розділ 6. Контактна і об’ємна різниця потенціалів
- •§9. Робота виходу електрона
- •Розділ 7.Електричний струм у рідинах
- •§10. Електричний струм у рідинах
- •Розділ 8. Електричний струм у газах
- •§11. Електричний струм у газах
- •Частина 2. Електромагнетизм Розділ 1. Магнітне поле у вакуумі
- •§1. Магнітне поле і його характеристики
- •§ 2. Закон повного струму
- •§ 3. Контур зі струмом в зовнішньому магнітному полі
- •Розділ 2. Магнітне поле в речовині
- •§ 4. Магнітне поле в магнетиках
- •§ 5. Класифікація магнетиків
- •Розділ 3. Електромагнітна індукція
- •§ 6. Електромагнітна індукція
- •Розділ 4. Електричні коливання
- •§ 7. Електричні коливання
- •Розділ 5. Система рівнянь Максвела
- •§ 8. Електромагнітне поле
1.3.2. Цикли Карно
1.3.2.А. Прямий обернений цикл Карно
Цикл Карно дозволяє підійти до поняття коефіцієнта дії теплової машини.
Схема роботи ідеальної теплової машини, що працює по циклу Карно:
Рис. 2
Рис. 3
Нагрівач отримує теплоту
, і газ під поршнем починає розширюватися так як
(ізотерма АВ). Так як процес рівновісний, то температура газу дорівнює температурі нагрівача.
Газ теплоізольований і починає адіабатично розширюватись до
яка дорівнює температурі холодильника (адіабата ВС).
Газ ізотермічно
стискається, віддаючи холодильнику теплоту
.
Газ адіабатно стискається, нагріваючись до температури нагрівача (адіабата DA).
Знайдемо
роботу, яку здійснює ідеальний газ в
даному циклі. Так як тепловий цикл –
круговий, то повна зміна внутрішньої
енергії газу дорівнює нулю (
).
Тоді перший закон термодинаміки для
робочого тіла (газу) в циклі Карно має
вигляд:
, (1)
при
цьому слід пам’ятати, що:
Роботу циклу можна виразити як суму робіт окремих процесів:
.
Так як сумарна робота адіабатичного розширення і стискання газу в даному циклі чисельно дорівнює нулю, тому:
, (2)
А – корисна робота циклу.
Так як
,
то з рівняння (2) слідує, що ця робота
і менша від тієї кількості теплоти, що
підводиться до нагрівача. Частина
енергії віддається холодильнику у
вигляді теплоти
.
Даний висновок справедливий для
будь-якого кругового процесу. Величину
відношення роботи до кількості теплоти
позначають
- термічний коефіцієнт теплового двигуна:
.
Для нашого оберненого циклу Карно:
. (3)
Формула
(3) не має жодних даних про властивості
робочого тіла і про будову теплової
машини, тобто звідси випливає, що ККД
усіх обернених машин, що працюють в
ідеальних умовах, тобто при одній і тій
самій температурі нагрівача
і температурі холодильника
буде однаковим і визначатиметься тільки
температурами нагрівача і холодильника.
Дане твердження носить назву теореми
Карно, яка є основою встановлення
термодинамічної шкали температур.
З рівняння (3) випливає:
.
Таким
чином, щоб порівняти температури двох
тіл
,
потрібно здійснити обернений цикл
Карно, в якому ці тіла використовуються
у вигляді нагрівача і холодильника і
порівняти теплоту
.
Термодинамічна шкала не зв’язана з властивостями термодинамічного тіла і в цьому є її досягнення. Але внаслідок необерненості реальних термодинамічних процесів, такий спосіб порівняння температур практично не виконується і має лише принципіальне значення.
1.3.2.Б. Обернений рівновісний цикл Карно
В
оберненому циклі Карно теплота
відводиться від газу в процесі
ізотермічного стискання при температурі
,
а кількість теплоти
навпаки підводиться до газу в процесі
ізотермічного розширення при
.
Тоді результуюча робота
,
тобто результуюча робота виконується
зовнішнім середовищем над газом.
Рис. 4
Даний
результат справедливий для будь-якого
оберненого циклу, таким чином за рахунок
здійсненої роботи зовнішніми силами
над робочим тілом, можна переносити
енергію у вигляді теплоти від менш
нагрітого тіла до більш нагрітого тіла.
Даний метод використовується в холодильній
техніці. Холодильна техніка буде тим
більш економічною, чим менша буде
робота
,
яка витрачається зовні на відведення
від холодильного тіла теплоти
.
З
рівняння, що
і з умови, що
,
знаходимо, що:
. (4)