Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рефлекторный принцип регуляции функций.docx
Скачиваний:
0
Добавлен:
07.01.2020
Размер:
944.66 Кб
Скачать

3. Структура и функции синапса:

Каждый многоклеточный организм, каждая ткань, состоящая из клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия. Рассмотрим, как осуществляются межнейронные взаимодействия. По нервной клетке информация распространяется в виде потенциалов действия. Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования - синапы (от греч. «Synapsis» -соединение, связь).

Различные синаптические контакты отличаются друг от друга. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

Синапс - представляет собой сложное структурное образование, состоящее из пресинаптической мембраны (чаще всего это концевое разветвление аксона), постсинаптической мембраны (чаще всего это участок мембраны тела или дендрита другого нейрона), а так же синаптической щели.

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем.

Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи - это так называемые смешанные синапсы.

Если электрические синапсы характерны для нервной системы более примитивных животных (нервная диффузионная система кишечнополостных, некоторые синапсы рака и кольчатых червей, синапсы нервной системы рыб), хотя они и обнаружены в мозге млекопитающих. Во всех перечисленных выше случаях импульсы передаются посредством деполяризующего действия электрического тока, который генерируется в пресинаптическом элементе. Хотелось бы также отметить, что в случае электрических синапсов возможна передача импульсов как в одном, так и в двух направлениях. Также у низших животных контакт между пресинаптическим и постсинаптическим элементом осуществляется посредством всего одного синапса - моносинаптическая форма связи, однако в процессе филогенеза осуществляется переход к полисинаптической форме связи, то есть, когда указанный выше контакт осуществляется посредством большего числа синапсов.

Однако, в данной работе, мне хотелось бы подробнее остановиться на синапсах с химическим механизмом передачи, которые составляют большую часть синаптического аппарата ЦНС высших животных и человека. Таким образом, химические синапсы, на мой взгляд, особенно интересны, так как они обеспечивают очень сложные взаимодействия клеток, а также связаны с рядом патологических процессов и изменяют свои свойства под влиянием некоторых лекарственных средств.

ХИМИЧЕСКИЙ СИНАПС:

Рассмотрим, как осуществляется химическая, синаптическая передача. Схематично это выглядит так: импульс возбуждения, достигает пресинаптической мембраны нервной клетки (дендрита или аксона), в которой содержатся синаптические пузырьки, заполненные особым веществом - медиатором (от латинского «Media» - середина, посредник, передатчик). Пресинаптическая мембрана содержит много кальциевых каналов. Потенциал действия деполяризует пресинаптическое окончание и, таким образом, изменяет состояние кальциевых каналов, вследствие чего они открываются. Так как концентрация кальция (Са2+) во внеклеточной среде больше, чем внутри клетки, то через открытые каналы кальций проникает в клетку. Увеличение внутриклеточного содержания кальция, приводит к слиянию пузырьков с пресинаптической мембраной. Медиатор выходит из синаптических пузырьков в синоптическую щель. Синаптическая щель в химических синапсах довольно широкая и составляет в среднем 10-20 нм. Здесь медиатор связывается с белками - рецепторами, которые встроены в постсинаптическую мембрану. Связывание медиатора с рецептором начинает цепь явлений, приводящих к изменению состояния постсинаптической мембраны, а затем и всей постсинаптической клетки. После взаимодействия с молекулой медиатора рецептор активируется, заслонка открывается, и канал становится проходимым или для одного иона, или для нескольких ионов одновременно.

Следует отметить, что химические синапсы отличаются не только механизмом передачи, но также и многими функциональными свойствами. Некоторые из них мне хотелось бы указать. Например, в синапсах с химическим механизмом передачи продолжительность синоптической задержки, то есть интервал между приходом импульса в пресинаптическое окончание и началом постсинаптического потенциала, у теплокровных животных составляет 0,2 - 0,5мс. Также, химические синапсы отличаются односторонним проведением, то есть медиатор, обеспечивающий передачу сигналов, содержится только в пресинаптическом звене. Учитывая, что в химических возникновениях синапсах возникновение постсинаптического потенциала обусловлено изменением ионной проницаемости постсинаптической мембраны, они эффективно обеспечивают как возбуждение, так и торможение. Указав, на мой взгляд, функциональные основные свойства химической синаптической передачи, рассмотрим, как же осуществляется процесс высвобождения медиатора, а так же опишем наиболее известные из них.

ВЫДЕЛЕНИЕ МЕДИА ТОРА:

Фактор, выполняющий медиаторную функцию, вырабатывается в теле нейрона, и оттуда транспортируется в окончание аксона. Содержащийся в пресинаптческих окончаниях медиатор должен выделиться в синаптическую щель, чтобы воздействовать на рецепторы постсинаптической мембраны, обеспечивая транссинаптическую передачу сигналов. В качестве медиатора могут выступать такие вещества, как ацетилхолин, катехоламиновая группа, серотонин, нейропиптиды и многие другие, их общие свойства будут описаны ниже.

Еще до того, как были выяснены многие существенные особенности процесса высвобождения медиатора, было установлено, что пресинаптические окончания могут изменять состояния спонтанной секреторной активности. Постоянно выделяемые небольшие порции медиатора вызывают в постсинаптической клетке так называемые спонтанные, миниатюрные постсинаптические потенциалы. Это было установлено в 1950 году английскими учеными Феттом и Катцом, которые, изучая работу нервно-мышечного синапса лягушки, обнаружили, что без всякого действия на нерв в мышце в области постсинаптической мембраны сами по себе через случайные промежутки времени возникают небольшие колебания потенциала, амплитудой примерно в 0,5мВ. Открытие, не связанного с приходом нервного импульса, выделения медиатора помогло установить квантовый характер его высвобождения, то есть получилось, что в химическом синапсе медиатор выделяется и в покое, но изредка и небольшими порциями. Дискретность выражается в том, что медиатор выходит из окончания не диффузно, не в виде отдельных молекул, а в форме многомолекулярных порций (или квантов), в каждой из которых содержится несколько тысяч молекул.

Происходит это следующим образом: в аксоплазме окончаний нейрона в непосредственной близости к пресинаптической мембране при рассмотрении под электронным микроскопом было обнаружено множество пузырьков или везикул, каждая из которых содержит один квант медиатора. Токи действия, вызываемые пресинаптическими импульсами, не оказывают заметного влияния на постсинаптическую мембрану, но приводят к разрушению оболочки пузырьков с медиатором. Этот процесс (экзоцитоз) заключается в том, что пузырек, подойдя к внутренней поверхности мембраны пресинаптического окончания при наличии кальция (Са2+), сливается с пресинаптической мембраной, в результате чего и происходит опорожнение пузырька в синаптическую щель. После разрушения пузырька окружающая его мембрана включается в мембрану пресинаптического окончания, увеличивая его поверхность. В дальнейшем, в результате процесса эндоцитоза, небольшие участки пресинаптической мембраны впячиваются внутрь, вновь образуя пузырьки, которые впоследствии снова способны включать медиатор и вступать в цикл его высвобождения.

ХИМИЧЕСКИЕ МЕДИАТОРЫ:

В ЦНС медиаторную функцию выполняет большая группа разнородных химических веществ. Список вновь открываемых химических медиаторов неуклонно пополняется. По последним данным их насчитывается около 30. Хотелось бы также отметить, что согласно принципу Дейла, каждый нейрон во всех своих синаптических окончаниях выделяет один и тот же медиатор. Исходя из этого принципа, принято обозначать нейроны по типу медиатора, который выделяют их окончания. Таким образом, например, нейроны, освобождающие ацетилхолин, называют холинэргическими, серотонин - серотонинергическими... Такой принцип может быть использован для обозначения различных химических синапсов. Рассмотрим некоторые из наиболее известных химических медиаторов:

АЦЕТИЛХОЛИН - один из первых обнаруженных медиаторов (был известен также как «вещество блуждающего нерва» из-за своего действия на сердце). Особенностью ацетилхолина как медиатора, является быстрое его разрушение после высвобождения из пресинаптических окончаний с помощью фермента ацетилхолинэстеразы. Ацетилхолин выполняет функцию медиатора в синапсах, образуемых возвратными коллатералями аксонов двигательных нейронов спинного мозга на вставочных клетках Реншоу, которые в свою очередь с помощью другого медиатора оказывают тормозящее воздействие на мотонейроны. Холинэргическими являются также нейроны спинного мозга, иннервирующие хромаффинные клетки и преганглионарные нейроны, иннервирующие нервные клетки интрамуральных и экстрамуральных ганглиев. Полагают, что холинэргические нейроны имеются в составе ретикулярной формации среднего мозга, мозжечка, базальных ганглиях и коре.

КАТЕХОЛАМИНЫ - это три родственных в химическом отношении вещества. К ним относятся: дофамин, нор адреналин и адреналин, которые являются производными тирозина и выполняют медиаторную функцию не только в периферических, но и в центральных синапсах. Дофаминергические нейроны находятся у млекопитающих главным образом в пределах среднего мозга. Особенно важную роль дофамин играет в полосатом теле, где обнаруживаются особенно большие количества этого медиатора. Кроме того, дофаминергические нейроны имеются в гипоталамусе. Норадренергические нейроны содержатся также в составе среднего мозга, моста и продолговатого мозга. Аксоны норадренергических нейронов образуют восходящие пути, направляющиеся в гипоталамус, таламус, лимбические отделы коры и в мозжечок. Нисходящие волокна норадренергических нейронов иннервируют нервные клетки спинного мозга. Катехоламины оказывают как возбуждающее, так и тормозящее действие на нейроны ЦНС.

СЕРОТОНИН - Подобно катехоламинам, относится к группе моноаминов, то есть синтезируется из аминокислоты триптофана. У млекопитающих серотонинергические нейроны локализуются главным образом в стволе мозга. Они входят в состав дорсального и медиального шва, ядер продолговатого мозга, моста и среднего мозга. Серотонинергические нейроны распространяют влияние на новую кору, гиппокамп, бледный шар, миндалину, подбугровую область, стволовые структуры, кору мозжечка, спинной мозг. Серотонин играет важную роль в нисходящем контроле активности спинного мозга и в гипоталамическом контроле температуры тела. В свою очередь нарушения серотонинового обмена, возникающие при действии ряда фармакологических препаратов, могут вызывать галлюцинации. Нарушение функций серотонинергических синапсов наблюдаются при шизофрении и других психических расстройствах. Серотонин может вызывать возбуждающее и тормозящее действие в зависимости от свойств рецепторов постсинаптической мембраны.

НЕЙТРАЛЬНЫЕ АМИНОКИСЛОТЫ - это две основные дикарбоксильные кислоты L-глутамат и L-аспартат, которые находятся в большом количестве в ЦНС и могут выполнять функцию медиаторов. L-глутаминовая кислота, входит в состав многих белков и пептидов. Она плохо проходит через гематоэнцефалический барьер и поэтому не поступает в мозг из крови, образуясь главным образом из глюкозы в самой нервной ткани. В ЦНС млекопитающих глутамат обнаруживается в высоких концентрациях. Полагают, что его функция главным образом связана с синаптической передачей возбуждения.

ПОЛИПЕПТИДЫ - В последние годы показано, что в синапсах ЦНС медиаторную функцию могут выполнять некоторые полипептиды. К таким полипептидам относятся вещества-Р, гипоталамические нейрогормоны, энкефалины и др. Под веществом-Р подразумевается группа агентов, впервые экстрагированных из кишечника. Эти полипептиды обнаруживаются во многих частях ЦНС. Особенно велика их концентрация в области черного вещества. Наличие вещества-Р в задних корешках спинного мозга позволяет предполагать, что оно может служить медиатором в синапсах, образуемых центральными окончаниями аксонов некоторых первичных афферентных нейронов. Вещество-Р оказывает возбуждающее действие на определенные нейроны спинного мозга. Медиаторная роль других нейропептидов выяснена еще меньше.

Электрический:

В первой половине ХХ века считалось, что передача нервного сигнала с помощью химического синапса присуща периферийним нервно-мускульным контактам позвоночных (автономная мускулатура и моторные контакты), но, в основном из-за нехватки опытных данных, считалось, что синапсы в Центральной нервной системе (ЦНС) используют непосредственно электрическую передачу. Но, после отработки методик внутриклеточной записи электрических потенциалов в 1950-х годах, было показано, что соединение нейронов химическими синапсами является правилом для ЦНС позвоночных.

В дальнейшем некоторые синапсы в нервной системе ракообразных были идентифицированы как электрические. В настоящее время обнаружено небольшое количество электрических синапсов в мозге млекопитающих, и большая их доля - в ЦНС низших позвоночных, особенно рыб. У беспозвоночных электрические синапсы довольно обычны в нервной системе аннелид и ракообразных. Электрические синапсы обычно расположены на таких нервных путях, где требуется соблюдение точно определенного времени прохождения нервного импульса — учитывая, что электрический синапс не вызывает заметной на опыте задержки сигнала.

Строение: Указанные свойства отражаются и на микроструктуре электрического синапса, обнаруженной с помощью электронного микроскопа.

В отличие от химического синапса, синаптическая щель в электрическом синапсе чрезвычайно узка (около 3,5 нанометров[2]). Через синаптическую щель данного типа синапсов проходят пространственно упорядоченные гидрофильные протеиновые туннели, каждый примерно 5 нанометров шириной, которые перфорируют пре- и постсинаптическую мембрану и называются коннексонами. У первичноротых организмов (нематоды, моллюски, членистоногие) коннексоны сформированы протеинами специфической структуры, называемые паннексинами (англ.) или иннексинами (англ.); у вторичноротых (иглокожие, асцидии, позвоночные) коннексоны построены из протеинов другого типа — коннексинов, которые кодируются другой группой генов.

Млекопитающие являются в этом плане менее дифференцированными вторичноротыми, и в их организме наряду с коннексинамы производятся также и паннексины, но до сих пор у позвоночных не выявлено ни одного электрического синапса, где межклеточные каналы были бы сформированы паннексинами.

Межмембранные тоннели, сформированные коннексинами (или паннексинами), обеспечивают жидкостную взаимосвязь между двумя нейронами — пре- и постсинаптическими — и обеспечивают проход через них ионов и малых молекул, в том числе искусственно введенных в клетку флуоресцентных красителей. Проход указанных красителей через электрический синапс может быть зарегистрирован даже с помощью светового микроскопа.

Электрические синапсы позволяют осуществлять электрическую проводимость в обоих направлениях (в отличие от химических); тем не менее, в последнее время у некоторых ракообразных были открыты направляющие электрические синапсы, то есть такие, которые позволяют осуществлять прохождение нервного сигнала только в одном направлении.

Функции Описанные свойства электрических синапсов определяют их функции в нервной системе различных организмов.

Благодаря прямому переходу ионов через такой синапс нервный сигнал передается ими практически без задержки. Это позволяет ракообразным, у которых такие синапсы совмещают нейроны, отвечающие за двигательную активность, минимизировать время между появлением опасности и моторной реакцией на нее — что часто является критическим при бегстве от хищника.

Более общая функция электрических синапсов, основанная на проведении ими сигнала в обоих направлениях, заключается в синхонизации активности нейронных популяций. Например, нейроны ствола головного мозга, генерирующие ритмические электрические импульсы, которые обеспечивают дыхание, очевидно могут синхронизировать эту активность. Такая синхронизация достигается благодаря наличию в их популяции электрических синапсов, которые мгновенно возбуждают клетки, «отставшие» на каком-либо такте возбуждения от других. Популяции нейронов, где имеются электрические синапсы, которые обеспечивают синхронизацию возбуждения, обнаружены также в коре, таламусе, мозжечке и других частях мозга.

Тот факт, что размер поры коннексонов электрических синапсов делает возможным переход из клетки в клетку молекул АТФ и вторичных мессенджеров, также играет важную роль в обеспечении синхронизации возбуждения и метаболизма нейронов — последнее особенно важно для клеток нейроглии, сочетание которых электрическими синапсами было открыто недавно.

Возбуждающий постсинаптический потенциал (ВПСП)

Открытие неспецифических каналов для катионов при взаимодействии ACh с ACh-рецептором приводит к сильному входящему току ионов Na+ и более слабому выходящему току ионов К+ на постсинаптической мембране. В конечном счете, в клетку течет больше положительных зарядов. Возникает локальная деполяризация мембраны , которая называется возбуждающим постсинаптическим потенциалом (ВПСП).

Взаимодействуя с рецептором, молекулы ACh открывают неспецифические ионные каналы в постсинаптической мембране клетки так, что повышается их способность к проводимости для одновалентных катионов. Какие катионы проходят через каналы, зависит от электрохимических градиентов. Равновесный потенциал для натрия равен +55 мВ, а потенциал мембраны постсинаптической клетки лежит в диапазоне от -60 до -80 мВ. Таким образом, существует сильная движущая сила для натрия, и его ионы устремляются внутрь клетки и деполяризуют ее мембрану ( рис. 21.5 , рис. 21.7 ). С другой стороны, канал проходим и для ионов К+, для которых сохраняется незначительный электрохимический градиент, направленный из внутриклеточной области к внеклеточной среде. Так как равновесный потенциал ионов К+ равен примерно -90 мВ, через постсинаптическую мембрану проходят и они, тем самым слегка противодействуя деполяризации, обусловленной входящим током ионов Na+. Работа данных каналов ведет к базовому входящему току положительных ионов и, следовательно, к деполяризации постсинаптической мембраны (ВПСП). На концевой пластинке нервно-мышечного синапса ВПСП называют также потенциалом концевой пластинки (ПКП) . Так как участвующие ионные токи зависят от разности равновесного потенциала и потенциала мембраны, то при уменьшенном потенциале покоя мембраны ток ионов Na+ ослабевает, а ток ионов К+ увеличивается, поэтому амплитуда ВПСП уменьшается.

Ионные токи, участвующие в возникновении ВПСП, ведут себя иначе нежели токи Na+ и К+ во время генерации потенциала действия. Причина в том, что в этом механизме участвуют другие ионные каналы с другими свойствами. В то время как при потенциале действия активируются потенциалуправляемые ионные каналы и с увеличивающейся деполяризацией открываются следующие каналы, так что процесс деполяризации усиливает сам себя, проводимость трансмиттеруправляемых (лигандуправляемых) каналов зависит только от количества молекул трансмиттера, связавшихся с молекулами рецептора (в результате чего открываются трансмиттеруправляемые ионные каналы), и, следовательно, от числа открытых ионных каналов. Амплитуда ВПСП лежит в диапазоне от 100 мкВ до 10 мВ. В зависимости от вида синапса общая продолжительность ВПСП находится в диапазоне от 5 до 100 мс.

Прежде всего, в зоне синапса локально образовавшийся ВПСП пассивно электротонически распространяется по всей постсинаптической мембране клетки. Это распространение не подчиняется закону "все или ничего". Если большое число синапсов возбуждается одновременно или почти одновременно, то возникает явление так называемой суммации, которое проявляется в виде возникновения ВПСП существенно большей амплитуды, что может деполяризовать мембрану всей постсинаптической клетки. Если величина этой деполяризации достигает в области постсинаптической мембраны определенного порогового значения (10 мВ или больше), то на аксонном холмике нервной клетки молниеносно открываются потенциалуправляемые Na+-каналы и она генерирует потенциал действия, проводящийся вдоль ее аксона. В случае моторной концевой пластинки это приводит к мышечному сокращению. От начала ВПСП до образования потенциала действия проходит еще около 0,3 мс, так что при обильном освобождении трансмиттера постсинаптический потенциал может появиться уже через 0,5-0,6 мс после пришедшего в пресинаптическую область потенциала действия.

В общих чертах, время "синаптической задержки", подразумевающее необходимое время между возникновением пре- и постсинаптического потенциала действия, всегда зависит от типа синапса.

Генерация потенциалов действия происходит в ближайшем к рецепторам перехвате Ранвье миелинизированных волокон или ближайшей к рецепторам части мембраны безмиелинового волокна. Минимальная сила адекватного стимула, достаточная для генерации потенциалов действия в первичном сенсорном нейроне, определяется как его абсолютный порог. Минимальный прирост силы стимула, сопровождающийся значимым изменением реакции сенсорного нейрона, представляет собой дифференциальный порог его чувствительности.

Информация о силе действующего на рецепторы стимула кодируется двумя способами: частотой потенциалов действия, возникающих в сенсорном нейроне (частотное кодирование), и числом сенсорных нейронов, возбудившихся в ответ на действие стимула. При увеличении силы действующего на рецепторы раздражителя повышается амплитуда рецепторного потенциала, что, как правило, сопровождается увеличением частоты потенциалов действия в сенсорном нейроне первого порядка. Чем шире имеющийся частотный диапазон потенциалов действия у сенсорных нейронов, тем большее число промежуточных значений силы раздражителя способна различать сенсорная система. Первичные сенсорные нейроны одинаковой модальности различаются порогом возбуждения, поэтому при действии слабых стимулов возбуждаются только наиболее чувствительные нейроны, но с увеличением силы раздражителя на него реагируют и менее чувствительные нейроны, имеющие более высокий порог раздражения. Чем больше первичных сенсорных нейронов возбудится одновременно, тем сильнее будет их совместное действие на общий нейрон второго порядка, что в итоге отразится на субъективной оценке интенсивности действующего раздражителя.

Длительность ощущения зависит от реального времени между началом и прекращением воздействия на рецепторы, а также от их способности уменьшать или даже прекращать генерацию нервных импульсов при продолжительном действии адекватного стимула. При длительном действии стимула порог чувствительности рецепторов к нему может повышаться, что определяется как адаптация рецепторов. Механизмы адаптации не одинаковы в рецепторах разных модальностей, среди них различают быстро адаптирующиеся (например, тактильные рецепторы кожи) и медленно адаптирующиеся рецепторы (например, проприоцепторы мышц и сухожилий). Быстро адаптирующиеся рецепторы сильнее возбуждаются в ответ на быстрое нарастание интенсивности стимула (фазический ответ), а их быстрая адаптация способствует освобождению восприятия от биологически незначительной информации (например, контакт между кожей и одеждой). Возбуждение медленно адаптирующихся рецепторов мало зависит от скорости изменения стимула и сохраняется при его длительном действии (тонический ответ), поэтому, например, медленная адаптация проприоцепторов позволяет человеку получать нужную ему для сохранения позы информацию в течение всего необходимого времени.

Существуют сенсорные нейроны, генерирующие потенциалы действия спонтанно, т. е. при отсутствии раздражения (например, сенсорные нейроны вестибулярной системы), такая активность называется фоновой. Частота нервных импульсов в этих нейронах может увеличиваться или уменьшаться в зависимости от интенсивности действующего на вторичные рецепторы стимула, кроме того, она может определяться направлением, в котором отклоняются чувствительные волоски механорецепторов. Например, отклонение волосков вторичных механорецепторов в одну сторону сопровождается повышением фоновой активности сенсорного нейрона, которому они принадлежат, а в противоположную сторону — понижением его фоновой активности. Указанный способ рецепции позволяет получать информацию и об интенсивности стимула, и о направлении, в котором он действует.

4 Торможение в ЦНС

Торможение в центральной нервной системе впервые открыто в 1862 г. И. М. Сеченовым в опыте раздражения мозга лягушки на уровне зрительных чертогов, где расположена узкая полоска серого вещества стволовой части мозга, — гомолог подбугорной области мозга высших животных и человека. Наложение на поперечный разрез мозга в области зрительных чертогов кристаллика хлористого натрия вызывает увеличение времени (торможение) спинномозгового двигательного рефлекса, вызываемого погружением лапки лягушки в слабый раствор кислоты. Несколько позже И. М. Сеченов установил, что при одновременном раздражении двух афферентных нервов, несущих возбуждение в спинной мозг, более сильное раздражение тормозит рефлекс на более слабое, например, ущемление пинцетом правой лапки лягушки вызывает удлинение времени рефлекса на кислоту (вплоть до полного его выпадения) левой лапки. В опытах И. М. Сеченова торможение одних нервных центров воз­никает как результат возбуждения центров других, — как явление, сопутствующее возбуждению в центральной нервной системе. Первона­чальное предположение И. М. Сеченова о наличии специально тормозя­щих нервных центров отпало, так как оказалось (в опытах его ученика В. В. Пашутина — одного из основоположников патологической физио­логии в России), что при раздражении зрительных чертогов лягушки в ряде опытов наступает не замедление спинальных двигательных реф­лексов, а их ускорение. Механизмы возникновения торможения в опытах И. М. Сеченова различные. Раздражение в области зрительных чертогов — центра вегетативной нервной системы — вызывает сеченовское торможение только при сохраненной симпатической цепочке и потому рассматривается как результат трофических сдвигов, передающихся по симпатическим нервным волокнам на спинной мозг (А. В. Тонких, лаборатория Л. А. Орбели). Торможение кислотного двигательного рефлекса, возникающее в результате одновременного механического раздражения кожных рецепторов другой конечности, является результатом индукционных отношений, обусловливающих подавление конкурирующих нервных центров.

Торможение - особый нервный процесс, который обусловливается возбуждением и внешне проявляется угнетением другого возбуждения. Оно способно активно распространяться нервной клеткой и ее отростками. Основал учение о центральноv торможение И. М. Сеченов (1863), который заметил, что изгибающий рефлекс лягушки тормозится при химическом раздражении среднего мозга. Торможение играет важную роль в деятельности ЦНС, а именно: в координации рефлексов; в поведении человека и животных; в регуляции деятельности внутренних органов и систем; в осуществлении защитной функции нервных клеток.

Типы торможения в ЦНС

Центральное торможение распределяется по локализации на пре- и постсинаптическое; по характеру поляризации (зарядом мембраны) - на гипер-и деполяризации; по строению тормозных нейронных цепей - на реципрокное, или соединенное, обратное и латеральное.

Пресинаптическое торможение, как свидетельствует название, локализуется в пресинаптических элементах и связано с угнетением проведения нервных импульсов в аксональных (пресинаптических) окончаниях. Гистологическим субстратом такого торможения является аксональные синапсы. К возбуждающему аксону подходит вставной тормозной аксон, который выделяет тормозной медиатор ГАМК. Этот медиатор действует на постсинаптическую мембрану, которая является мембраной возбуждающего аксона, и вызывает в ней деполяризацию. Возникшая деполяризация тормозит вход Са2 + из синаптической щели в заключение возбуждающего аксона и таким образом приводит к снижению выброса возбуждающего медиатора в синаптическую щель, торможение реакции. Пресинаптическое торможение достигает максимума через 15-20 мс и длится около 150 мс, то есть гораздо дольше, чем постсинаптическое торможение. Пресинаптическое торможение блокируется судорожными ядами - бикулином и пикротоксин, которые являются конкурентными антагонистами ГАМК.

Постсинаптическое торможение (ГПСП) обусловлено выделением пресинаптическим окончанием аксона тормозного медиатора, который снижает или тормозит возбудимость мембран сомы и дендритов нервной клетки, с которой он контактирует. Оно связано с существованием тормозных нейронов, аксоны которых образуют на соме и дендритах клеток нервных окончаний, выделяя тормозные медиаторы - ГАМК и глицин. Под влиянием этих медиаторов возникает торможение возбуждающих нейронов. Примерами тормозных нейронов являются клетки Реншоу в спинном мозге, нейроны грушевидные (клетки Пуркинье мозжечка), звездчатые клетки коры большого, мозга и др.. Исследованием П. Г. Костюка (1977) доказано, что постсинаптического торможения связано с первичной гиперполяризацией мембраны сомы нейрона, в основе которой лежит повышение проницаемости постсинаптической мембраны для К +. Вследствие гиперполяризации уровень мембранного потенциала удаляется от критического (порогового) уровня. То есть происходит его увеличение - гиперполяризация. Это приводит к торможению нейрона. Такой вид торможения называется гиперполяризационным. Амплитуда и полярность ГПСП зависят от исходного уровня мембранного потенциала самого нейрона. Механизм этого явления связан с Сl+. С началом развития ТПСП Сl- входит в клетку. Когда в клетке становится его больше, чем снаружи, глицин конформирует мембрану и через открытые ее отверстия Сl+выходит из клетки. В ней уменьшается количество отрицательных зарядов, развивается деполяризация. Такой вид торможения называется деполяризационным.

Постсинаптическое торможение локальное. Развивается оно градуально, способное к суммации, не оставляет после себя рефрактерности. Является более оперативным, четко адресованным и универсальным тормозным механизмом. По своей сути это «центральное торможение», которое было описано в свое время Ch. S. Sherrington (1906). В зависимости от структуры тормозного нейронного цепочки, различают следующие формы постсинаптического торможения: реципрокное, обратное и латеральное, которое является собственно разновидностью обратного.

Реципрокное (сочетанное) торможение характеризуется тем, что в том случае, когда при активизации афферентов возбуждаются, например, мотонейроны мышц-сгибателей, то одновременно (на этой стороне) тормозятся мотонейроны мышц-разгибателей, действующие на этот же сустав. Происходит это потому, что афференты от мышечных веретен образуют возбуждающие синапсы на мотонейронах мышц-агонистов, а через посредство вставного тормозного нейрона - тормозные синапсы на мотонейронах мышц-антагонистов. С физиологической точки зрения такое торможение очень выгодно, поскольку облегчает движение сустава «автоматически», без дополнительного произвольного или непроизвольного контроля.

Обратное торможение. В этом случае от аксонов мотонейрона отходит одна или несколько коллатералей, которые направляются в вставных тормозных нейронов, например, клеток Реншоу. В свою очередь, клетки Реншоу образуют тормозные синапсы на мотонейроны. В случае возбуждения мотонейрона активизируются и клетки Реншоу, вследствие чего происходит гиперполяризация мембраны мотонейрона и тормозится его деятельность. Чем больше возбуждается мотонейрон, тем больше ощутимые тормозные влияния через клетки Реншоу. Таким образом, обратное постсинаптическое торможение функционирует по принципу отрицательной обратной связи. Есть предположение, что этот вид торможения требуется для саморегуляции возбуждения нейронов, а также для предотвращения их перевозбуждению и судорожным реакциям.

Латеральное торможение. Тормозная цепь нейронов характеризуется тем, что вставные тормозные нейроны влияют не только на воспаленную клетку, но и на соседние нейроны, в которых возбуждение является слабым или вовсе отсутствует. Такое торможение называется латеральным, поскольку участок торможения, который образуется, содержится сбоку (латерально) от возбужденного нейрона. Оно играет особенно важную роль в сенсорных системах, создавая явление контраста.

Постсинаптическое торможения преимущественно легко снимается при введении стрихнина, который конкурирует с тормозным медиатором (глицином) на постсинаптической мембране. Столбнячный токсин также подавляет постсинаптическое торможение, нарушая высвобождение медиатора из тормозных пресинаптических окончаний. Поэтому введение стрихнина или столбнячного токсина сопровождается судорогами, которые возникают вследствии резкого усиления процесса возбуждения в ЦНС, в частности, мотонейронов. В связи с раскрытием ионных механизмов постсинаптического торможения появилась возможность и для объяснения механизма действия Вr. Натриq бромид в оптимальных дозах широко применяется в клинической практике как седативное (успокоительное) средство. Доказано, что такой эффект натрия бромида связан с усилением постсинаптического торможения в ЦНС.

Роль различных видов центрального торможения

Главная роль центрального торможения заключается в том, чтобы во взаимодействии с центральным возбуждением обеспечивать возможность анализа и синтеза в ЦНС нервных сигналов, а следовательно, возможность согласования всех функций организма между собой и с окружающей средой. Эту роль центрального торможения называют координационной. Некоторые виды центрального торможения выполняют не только координационную, а и защитную (охранную) роль. Предполагают, что основная координационная роль пресинаптического торможения заключается в угнетении в ЦНС малосущественными афферентными сигналами. За счет прямого постсинаптического торможения согласуется деятельность антагонистических центров. Обратное торможение, ограничивая максимально возможную частоту разрядов мотонейронов спинного мозга, выполняет и координационную роль (согласовывает максимальную частоту разрядов мотонейронов со скоростью сокращения мышечных волокон, которые они иннервируют) и защитную (предотвращает возбуждению мотонейронов). У млекопитающих этот вид торможения распространен в основном в спинномозговых афферентных системах. В высших отделах мозга, а именно в корковом веществе большого мозга, доминирует постсинаптическое торможение.

5

Пресинаптическое торможение (лат. praе -впереди чего-либо + греч. sunapsis соприкосновение, соединение) - частный случай синаптических тормозных процессов, проявляющихся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким-либо изменениям.

6Пресинаптическое торможение осуществляется посредством специальных тормозных интернейронов. Его структурной основой являются аксо-аксональные синапсы, образованные терминалиями аксонов тормозных интернейронов и аксональными окончаниями возбуждающих нейронов.Деполяризация вызывает уменьшение амплитуды потенциала действия, приходящего в возбуждающее окончание аксона. В результате происходит угнетение процесса высвобождения медиатора возбуждающими нервными окончаниями и снижение амплитуды возбуждающего постсинаптического потенциала.

При этом окончание аксона тормозного нейрона является пресимпатическим по отношению к терминали возбуждающего нейрона, которая оказывается постсинаптической по отношению к тормозному окончанию и пресинаптической по отношению к активируемой им нервной клетки. В окончаниях пресинаптического тормозного аксона освобождается медиатор, который вызывает деполяризацию возбуждающих окончаний за счет увеличения проницаемости их мембраны для CI.

Характерной особенностью пресинаптической деполяризации является замедленное развитие и большая длительность (несколько сотен миллисекунд), даже после одиночного афферентного импульса.

Какое функциональное значение пресинаптического торможения? За его счет осуществляется воздействие не только на собственный рефлекторный аппарат спинного мозга, но и на синаптические переключения ряда восходящих по головному мозгу трактов. Известно также о нисходящем пресинаптическом торможении первичных афферентных волокон группы Аа и кожных афферентов. В этом случае пресинаптическое торможение является, очевидно, первым «ярусом» активного ограничения информации, поступающей извне. В ЦНС, особенно в спинном мозге, пресинаптическое торможение часто выступает в роли своеобразной отрицательной обратной связи, которая ограничивает афферентную импульсацию при сильных (например, патологических) раздражениях и таким образом отчасти выполняет защитную функцию по отношению спинномозговых и выше расположенных центров. Функциональные свойства синапсов не являются постоянными. В некоторых условиях эффективность их деятельности может расти или уменьшаться. Обычно при высоких частотах раздражения (несколько сот за 1 с) в течение нескольких секунд или даже минут облегчается синаптическая передача. Это явление получило название синаптической потенциации. Такая синаптическая потенциация может наблюдаться и по окончании тетанической стимуляции. Тогда она будет называться посттетанической потенциацией (ПТП). В основе ПТП (долговременного увеличения эффективности связи между нейронами), вполне вероятно, лежат изменения функциональных возможностей пресинаптического волокна, а именно его гиперполяризация. В свою очередь, это сопровождается повышением выхода медиатора в синаптическую щель и появлением увеличенного ВПСП в постсинаптической структуре. Есть данные и о структурных изменениях при ПТП (набухание и рост пресинаптических окончаний, сужение синаптической щели т.д.). ПТП гораздо лучше выражена в высших отделах ЦНС (например, в гиппокампе, пирамидных нейронах коры большого мозга) по сравнению с спинномозговыми нейронами. Наряду с ПТП в синаптическом аппарате может возникать постактивационная депрессия, выражающаяся уменьшением амплитуды ВПСП. Эту депрессию многие исследователи связывают с ослаблением чувствительности к действию медиатора (десенсибилизации) постсинаптической мембраны или различным соотношением затрат и мобилизации медиатора. С пластичностью синаптических процессов, в частности с ПТП, возможно, связаны формирования новых межнейронных связей в ЦНС и их закрепление, т.е. механизмы обучения и памяти. Вместе с тем следует признать, что пластические свойства центральных синапсов изучены пока недостаточно.