
- •Ответы на госэкзамены
- •2. Примерный состав продуктов сгорания и способы его измерения.
- •3.Способы измерения расходов теплоносителей и учета тепловой энергии в системах отопления и гвс
- •4.Основные газовые законы. Уравнение состояния идеального газа.
- •4. Закон Авогадро
- •5 .6. Уравнение основных термодинамических процессов идеального газа. Графики основных термодинамических процессов идеального газа в p-V и t-s диаграммах.
- •7.Какой процесс остается неизменным в адиабатном процессе и почему?
- •8.Что такое энтальпия? Как изменяется энтальпия в процессе дросселирования идеального газа?
- •9.Первый закон термодинамики и его записи через внутреннюю энергию и энтальпию?
- •10.Записать формулу для расчета количества тепла, необходимого для нагрева м кг газа на при постоянном давлении и объеме?
- •11.Как определить среднюю в интервале температур t1 и t2 теплоемкость по табличным значениям от 00 до t10c и до t20c соответственно. Чему равна теплоемкость в адиабатическом процессе?
- •13. Дайте одну из формулировок 2-го закона термодинамики? Приведите его математическую запись.
- •14.Принцип работы вечных двигателей 1-го и 2-го рода.
- •15. Опишите процесс сжатия газов в компрессоре в pv и ts координатах.
- •16.Что такое помпаж и как его избежать?
- •23.От чего зависит и каков порядок кпд современных тепловых двигателей (двс, гту, пту, пгу)?
- •24.Уравнение 1 закона термодинамики для потока
- •26.Цикл гту и его кпд
- •27. Цикл Ренкина и его кпд.
- •28.Способы повышения эффективности использования топлива в цикле Ренкина.
- •29.Цикл пгу и его кпд
- •30. 31.Что такое эксергия рабочего тела, потока и тепла? Расчет эксергии теплоты и потока рабочего тела.
- •33.Влажный воздух и его характеристики
- •36.Основные способы распространения тепла.
- •37.Основные законы теплопроводности- закон Фурье.
- •38.Что такое коэффициент теплопроводности, его размерность, от чего зависит его величина, где его взять для выполнения расчетов?
- •39.Порядок величины коэффициента теплопроводности для различных веществ.
- •40.Виды конвекции, и чем они отличаются.
- •41. Основное уравнение конвективного теплопереноса - уравнение Ньютона.
- •42.Что такое коэффициент теплоотдачи, его размерность, как его определить для выполнения расчетов?
- •43.От чего зависит коэффициент теплоотдачи? Порядок его величины для различных случаев теплообмена.
- •44.Почему зависимости для определения коэффициента теплоотдачи представляются в безразмерной форме.
- •45.Что такое коэффициент теплопередачи, и от чего он зависит?
- •46.Закон Стефана-Больцмана.
- •47.Как расчесать тепловой поток теплопроводностью через плоскую стенку?
- •48. Как расчесать тепловой поток теплопроводностью через многослойную плоскую стенку?
- •50.Термическое сопротивление теплопередачи для плоской и цилиндрической стенки.
- •51.Из чего складывается термическое сопротивление теплопередачи через многослойную стенку?
- •52. От каких критериев зависит безразмерный коэффициент теплопередачи при вынужденной и естественной конвекции?
- •53.Как расчесать тепловой поток излучением между двумя бесконечно плоскими стенками? Между телами произвольной формы?
- •54.Как расчесать коэффициент теплопередачи излучением между объемом излучающего газа (пылевзвеси) и окружающими его стенками (топочными экранами)?
- •55.Понятие термического сопротивления теплоотдачи, теплопроводности, теплопередачи. Число Био и его смысл.
- •56.Как рассчитать средний температурный напор в теплообменнике? При каких условиях среднелогарифмический напор можно заменить среднеарефмитическим?
- •57.Виды теплообменников и области их преимущественного применения.
- •61.Для чего нужны теории подобия и анализ размерностей.
- •67.Нарисуйте график изменения давления по длине водяной тепловой сети для произвольно выбранного профиля местности и высоты зданий - теплопотребителей.
- •68. Что называется коэффициентом теплофикации?
- •73.Понятие щелочности воды. Метод ее определения.
- •74.Понятие жесткости воды. Методы ее определения.
- •75. Какие виды жесткости бывают, и какие из них наиболее опасны для паровых и водогрейных котлов?
- •76. Показатель концентрации ионов водорода в воде –рН.
- •77. Назначение Na-катионирование. Как меняются при этом свойства воды?
- •79. Назначение он-катионирование. Как меняются при этом свойства воды?
- •105.Каковы причины использования много ступенчатых нагнетателей?
- •106. Причины возникновения и способы компенсации осевой силы в нагнетателях.
- •107. Основные типы энергетических насосов (по назначению).
- •108. Что такое самотяга дымовой трубы.
26.Цикл гту и его кпд
В газовой турбине Т продукты сгорания адиабатно расширяются, в результате чего их температура снижается до Т4, а давление уменьшается до атмосферного р1. Весь перепад давлений р3 – p1 используется для получения технической работы в турбине lтех Большая часть этой работы lк расходуется на привод компрессора; разность lтех –lk является полезной и используется, например, на производство электроэнергии в электрическом генераторе ЭГ или на другие цели (при использовании жидкого топлива расход энергии на привод топливного насоса невелик, и в первом приближении его можно не учитывать).
Г
азотурбинная
установка ГТУ
где -степень повышения давления 5-7
КПД цикла порядка 40%
С увеличением КПД увеличивается
Не имея деталей с возвратно-поступательным движением, газовые турбины могут развивать значительно большие мощности, чем ДВС. Предельные мощности ГТУ сегодня составляют 100-200 МВт. Они определяются высотой лопаток, прочность которых должна выдерживать напряжения от центробежных усилий, возрастающих с увеличением их; высоты и частоты вращения вала. Поэтому газовые турбины применяются прежде всего в качестве мощных двигателей в авиации и на морском флоте, а также в маневренных стационарных энергетических установках.
Ряд технологических процессов, особенно химической промышленности, связан с потоками нагретых сжатых газов. Расширение этих газов в газовой турбине позволяет получить энергию, которая обычно используется в этом же процессе, например для нагнетания тех же газов. В этом случае вал турбины непосредственно соединяется с валом турбокомпрессора. Такое комбинирование позволяет существенно снизить потребление энергии в технологическом процессе. К сожалению, оно используется еще недостаточно широко, во-первых, из-за косности мышления технологов, а во-вторых, из-за отсутствия турбин на нужные параметры. Часто используют авиационные двигатели, выработавшие свой ресурс.
В энергетике газовые турбины иногда используют для привода воздуходувок, нагнетающих воздух в топку котла, работающую под давлением. Для этого продукты сгорания, охлажденные в котле до необходимой температуры, направляются в турбину, сидящую на одном валу с воздуходувкой, и расширяются в ней до атмосферного давления, совершая работу.
27. Цикл Ренкина и его кпд.
Подведенная теплота. q1
q1=i2-i1 кДж/кг
q1=i1-ik, кДж/кг
Отведенная теплота q2
q2=i2-i3, кДж/кг
Полезно используемая теплота q0
q0=q1-q2, кДж/кг
Работа, совершенная в турбине lт (внешняя работа процесса расширения)
lт =i1-i2, кДж/кг
Работа, затраченная в насосе
lн=i4-i3 , кДж/кг
Полезная работа цикла l0
l0=lт-lн=(i1-i2)-(i4-i3)=(i1-i4)-(i2-i3)=q1-q2=q0
Термический КПД цикла
=30-40%
=1-q2/q1
Удельный расход пара d
d=1/l0, кДж/кг
d=3600/l0, кг/г/кВт
Полный расход пара D
D=d*N, кг/ч
10. Тепловая мощность парогенератора и конденсатора Q1 и Q2
Q1=q1*D , кВт
Q2=q2*D , кВт