
- •Сопротивление материалов
- •Раздел I. Методологические основы расчёта
- •Раздел II. Исследование напряженно-деформи-
- •Раздел III. Стержневые системы. . . . . . . . . 146
- •12. Расчёт статически неопределимых сисстем
- •Раздел IV. Динамическое и циклическое
- •15. Прочность материалов при циклически
- •Раздел V. Методические указания и задачи для
- •Основные обозначения
- •Раздел I. Методологические основы расчёта элементов конструкций.
- •1. Основные понятия
- •2. Внутренние силы
- •Метод сечений
- •2.2. Вычисление внутренних усилий и построение их эпюр
- •2.3. Дифференциальные уравнения равновесия для внутренних усилий в поперечных сечениях стержней
- •Практикум
- •Вопросы для повторения
- •Контрольные тесты
- •3. Геометрические характеристики плоских сечений
- •3.1. Основные понятия
- •3.2. Моменты инерции простейших фигур
- •3.3. Зависимости между моментами инерции относительно параллельных осей
- •3.4 Главные оси и главные
- •3.5. Практикум
- •Контрольные тесты
- •4. Напряжения и деформации
- •4.1. Понятие о напряжениях, связь с внутренними усилиями в брусе
- •4.2. Плоское напряженное состояние
- •4.3. Перемещения и деформации
- •4.4 Практикум Примеры
- •Вопросы для повторения
- •Контрольные тесты
- •5. Механические свойства материалов. Физические уравнения
- •5.1. Постановка эксперимента
- •5.2. Диаграммы растяжения и основные механические характеристики материалов
- •5.3. Диаграммы сжатия. Особенности разрушения при сжатии
- •5.4. Соотношения упругости
- •5.5. Линейный физический закон
- •5.6. Соотношения пластичности
- •5.7 Практикум
- •Тесты для повторения
- •Контрольные тесты
- •6. Модели предельного состояния
- •6.1. Модели предельного состояния в локальной области
- •6.2. Модели разрушения
- •6.3. Методы поверочных расчетов
- •6.4 Практикум
- •Раздел II. Исследование напряженно-
- •7. Растяжение сжатие
- •7.1. Основные предпосылки
- •7.2. Растяжение (сжатие) прямого бруса постоянного сечения
- •7.3. Влияние собственного веса конструкции
- •7.4. Композитный брус
- •7.5. Поверочные и проектные расчеты
- •7.6 Практикум Примеры
- •Вопросы для повторения
- •Контрольные тесты
- •8. Сдвиг
- •8.1 Основные положения
- •8.2. Практические расчёты соединений, работающих на сдвиг.
- •8.3 Практикум Примеры
- •Вопросы для повторения
- •9. Кручение
- •9.1. Основные понятия
- •9.2. Напряженно-деформированное состояние круглого бруса
- •9.3. Поверочные и проектные расчеты
- •9.4 Практикум
- •Контрольные тесты
- •10. Изгиб
- •10.1 . Плоский изгиб волокна
- •10.2. Чистый прямой изгиб призматического бруса
- •10.3. Поперечный изгиб
- •10.4. Поверочные и проектные расчеты
- •10.5 Перемещение при изгибе. Метод начальных параметров.
- •10.6. Композитный брус
- •10.7. Предельное сопротивление балки
- •Практикум
- •Вопросы для повторения
- •Контрольные тесты
- •11. Сложное сопротивление
- •11.1. Общие понятия
- •11.2. Чистый косой изгиб призматического бруса
- •11.3. Чистый изгиб с растяжением (сжатием)
- •11.4. Изгиб с кручением брусьев круглого сечения
- •11.5. Расчёт безмоментных оболочек вращения
- •11.6 Практикум
- •Раздел III. Стержневые системы
- •12. Расчёт статически неопределимых систем методом сил
- •12.1 Основная система и сущность метода
- •12.2. Определение перемещений методом Мора
- •12.3 Канонические уравнения
- •12.4 Построение эпюр внутренних усилий
- •12.5 Практикум
- •13. Расчет сжатых стержней на устойчивость
- •13.1. Устойчивые и неустойчивые формы равновесия
- •13.2. Формула Эйлера для критической силы
- •13.3. Влияние способа закрепления концов стержня на критическую силу
- •13.4. Подбор сечения по условиям безопасной устойчивости
- •13.5 Продольно поперечный изгиб сжатых стержней.
- •13.6 Практикум
- •Раздел IV. Динамическое и циклическое нагружение
- •14.1. Движение тела с ускорением
- •14.2 Ударная нагрузка на стержень
- •14.3 Колебания системы с одной степенью свободы
- •14.4 Практикум
- •15. Прочность материалов при циклических напряжениях
- •15.1. Основные понятия
- •15.2. Факторы, влияющие на величину предела выносливости
- •15.3 Практикум.
- •Раздел V. Методические указания и задачи для самосто-ятельного решения и контрольных работ
- •V.1. Методические указания к выполнению задания
- •V.2. Контрольное задание №1
- •Задача 3.2
- •Задача 3.4
- •308012, Г. Белгород, ул. Костюкова, 46
2.2. Вычисление внутренних усилий и построение их эпюр
В сечении определяют центр приведения и показывают внутренние усилия. Записывают условия равновесия для отсеченной части тела:
Из
этих условий при подробном вычислении
их левых частей вытекают уравнения, в
которых неизвестные внутренние усилия
выступают в явной форме. Совпадение
числа уравнений с числом неизвестных
внутренних усилий означает, что нахождение
последних − статически определимая
задача. Записав, например, уравнение
равновесия для левой части (рис.2.1,в)
получаем
Таким образом, поперечную силу в сечении
можно определить как алгебраическую
сумму проекций на ось у
внешних сил, приложенных к рассматриваемой
части. Эти силы входят в уравнение со
знаками, определенными для внутренних
сил. Аналогичный алгоритм можно составить
для других внутренних сил. Иллюстрацией
сказанному служит пример 2.1 в п.2.4.
Проверка правильности определения усилий ведется в двух направлениях: а) выполнение условий равновесия, не использованных при определении внутренних усилий; б) проверка равновесия части тела, которая не рассматривалась при решении задачи.
Эпюра внутреннего усилия обычно строится по точкам с помощью его аналитического выражения. В случае прерывного характера распределения нагрузки, а также прерывности координат сечения и координат центра приведения требуется записать аналитические выражения для отдельных участков.
Усилия могут быть определены более просто, если удается уменьшить число искомых неизвестных (использование условий прямой и обратной симметрии, разложение пространственной системы сил на несколько плоских систем, использование известных частных решений) или путем разделения вхо-
дящих в уравнения неизвестных (например, путем рационального выбора осей проекций и моментов).
Прямосимметричные внутренние усилия (продольная сила, изгибающие моменты) перемещают части тела в симметричные положения, обратносим-метричные внутренние усилия (поперечные силы, крутящий момент) − в обратносимметричные положения. В сечении, по обе стороны от которого нагрузка прямосимметрична, обратносимметричные усилия обращаются в нуль (и наоборот).
2.3. Дифференциальные уравнения равновесия для внутренних усилий в поперечных сечениях стержней
В
общем случае нагрузка на стержень может
быть задана интенсивностью сил с
составляющими
,
и интенсивностью моментов с составляющими
.
Возможна также нагрузка, сосредоточенная
в отдельных точках. Для бесконечно малой
части стержня (рис.2.3) составим
дифференциальные уравнения равновесия.
Рис. 2.3
Из
условий
следуют уравнения:
Из
условий
получаем:
откуда, пренебрегая бесконечно малыми второго порядка, находим
Подставляя
выражения
в соответствующие дифференциальные
уравнения, получаем
Интегрируя полученные шесть уравнений, находим выражения для внутренних усилий:
Постоянные интегрирования Сi (i=1,2,...,6) определяются из граничных условий для рассматриваемых внутренних усилий.
Поскольку дифференциальные уравнения выражают равновесие любого бесконечно малого элемента стержня, то удовлетворение им означает выполнение условий равновесия стержня в целом.
Дифференциальные
зависимости используются для проверки
результатов, полученных с помощью
алгебраических уравнений равновесия.
Они позволяют, например, по эпюре
определить характер эпюры
.
В частности, на участках, где
=0
(
=0),
т.е. при соблюдении зависимостей
можно
установить, что при Мz
=
const
имеем Qy
=
0
(при
Мy
=
const
имеем Qz
=
0). Переменная величина
достигает экстремальных значений в
точках, где Qy
=
0
(Qz
=
0).
При определении внутренних усилий из уравнений равновесия целесообразно нагрузку на поверхности переносить в соответствующие точки на оси стержня с соблюдением условий статической эквивалентности. Полученная таким образом силовая схема является составной частью так называемой расчетной схемы (системы), когда брус представляется его осью.