
- •Сопротивление материалов
- •Раздел I. Методологические основы расчёта
- •Раздел II. Исследование напряженно-деформи-
- •Раздел III. Стержневые системы. . . . . . . . . 146
- •12. Расчёт статически неопределимых сисстем
- •Раздел IV. Динамическое и циклическое
- •15. Прочность материалов при циклически
- •Раздел V. Методические указания и задачи для
- •Основные обозначения
- •Раздел I. Методологические основы расчёта элементов конструкций.
- •1. Основные понятия
- •2. Внутренние силы
- •Метод сечений
- •2.2. Вычисление внутренних усилий и построение их эпюр
- •2.3. Дифференциальные уравнения равновесия для внутренних усилий в поперечных сечениях стержней
- •Практикум
- •Вопросы для повторения
- •Контрольные тесты
- •3. Геометрические характеристики плоских сечений
- •3.1. Основные понятия
- •3.2. Моменты инерции простейших фигур
- •3.3. Зависимости между моментами инерции относительно параллельных осей
- •3.4 Главные оси и главные
- •3.5. Практикум
- •Контрольные тесты
- •4. Напряжения и деформации
- •4.1. Понятие о напряжениях, связь с внутренними усилиями в брусе
- •4.2. Плоское напряженное состояние
- •4.3. Перемещения и деформации
- •4.4 Практикум Примеры
- •Вопросы для повторения
- •Контрольные тесты
- •5. Механические свойства материалов. Физические уравнения
- •5.1. Постановка эксперимента
- •5.2. Диаграммы растяжения и основные механические характеристики материалов
- •5.3. Диаграммы сжатия. Особенности разрушения при сжатии
- •5.4. Соотношения упругости
- •5.5. Линейный физический закон
- •5.6. Соотношения пластичности
- •5.7 Практикум
- •Тесты для повторения
- •Контрольные тесты
- •6. Модели предельного состояния
- •6.1. Модели предельного состояния в локальной области
- •6.2. Модели разрушения
- •6.3. Методы поверочных расчетов
- •6.4 Практикум
- •Раздел II. Исследование напряженно-
- •7. Растяжение сжатие
- •7.1. Основные предпосылки
- •7.2. Растяжение (сжатие) прямого бруса постоянного сечения
- •7.3. Влияние собственного веса конструкции
- •7.4. Композитный брус
- •7.5. Поверочные и проектные расчеты
- •7.6 Практикум Примеры
- •Вопросы для повторения
- •Контрольные тесты
- •8. Сдвиг
- •8.1 Основные положения
- •8.2. Практические расчёты соединений, работающих на сдвиг.
- •8.3 Практикум Примеры
- •Вопросы для повторения
- •9. Кручение
- •9.1. Основные понятия
- •9.2. Напряженно-деформированное состояние круглого бруса
- •9.3. Поверочные и проектные расчеты
- •9.4 Практикум
- •Контрольные тесты
- •10. Изгиб
- •10.1 . Плоский изгиб волокна
- •10.2. Чистый прямой изгиб призматического бруса
- •10.3. Поперечный изгиб
- •10.4. Поверочные и проектные расчеты
- •10.5 Перемещение при изгибе. Метод начальных параметров.
- •10.6. Композитный брус
- •10.7. Предельное сопротивление балки
- •Практикум
- •Вопросы для повторения
- •Контрольные тесты
- •11. Сложное сопротивление
- •11.1. Общие понятия
- •11.2. Чистый косой изгиб призматического бруса
- •11.3. Чистый изгиб с растяжением (сжатием)
- •11.4. Изгиб с кручением брусьев круглого сечения
- •11.5. Расчёт безмоментных оболочек вращения
- •11.6 Практикум
- •Раздел III. Стержневые системы
- •12. Расчёт статически неопределимых систем методом сил
- •12.1 Основная система и сущность метода
- •12.2. Определение перемещений методом Мора
- •12.3 Канонические уравнения
- •12.4 Построение эпюр внутренних усилий
- •12.5 Практикум
- •13. Расчет сжатых стержней на устойчивость
- •13.1. Устойчивые и неустойчивые формы равновесия
- •13.2. Формула Эйлера для критической силы
- •13.3. Влияние способа закрепления концов стержня на критическую силу
- •13.4. Подбор сечения по условиям безопасной устойчивости
- •13.5 Продольно поперечный изгиб сжатых стержней.
- •13.6 Практикум
- •Раздел IV. Динамическое и циклическое нагружение
- •14.1. Движение тела с ускорением
- •14.2 Ударная нагрузка на стержень
- •14.3 Колебания системы с одной степенью свободы
- •14.4 Практикум
- •15. Прочность материалов при циклических напряжениях
- •15.1. Основные понятия
- •15.2. Факторы, влияющие на величину предела выносливости
- •15.3 Практикум.
- •Раздел V. Методические указания и задачи для самосто-ятельного решения и контрольных работ
- •V.1. Методические указания к выполнению задания
- •V.2. Контрольное задание №1
- •Задача 3.2
- •Задача 3.4
- •308012, Г. Белгород, ул. Костюкова, 46
2. Внутренние силы
Метод сечений
Внутренние силы возникают между отдельными элементами сооружения и между отдельными частями элемента под действием внешних сил. Определение внутренних сил производят методом сечений. Сущность его заключается в том, что тело, находящееся в равновесии (рис.2.1,а), рассекают мысленно на две части (рис.2.1,б), отбрасывают одну из частей, заменяя влияние отброшенной части внутренними силами, и составляют уравнения равновесия для оставшейся части, на которую действуют приложенные к ней внешние силы1 и подлежащие определению внутренние силы, распределенные по сечению.
а
б
в
Рис. 2.1
Обычно плоскость сечения проводится перпендикулярно касательной к оси бруса. Систему внутренних сил можно привести к одной силе R и к одной паре М. Выберем в качестве центра приведения сил центр тяжести сечения 0 и
направим ось Оx правой прямоугольной системы координат перпендикулярно сечению в сторону внешней нормали. Разложим векторы R и M на составляющие (рис. 2.1,в). Силу N , направленную по касательной к оси стержня, называют продольной силой. Силы Qy и Qz, направленные по нормали к оси стержня, называют поперечными силами. Момент Т относительно оси х называют крутящим. Моменты Мy и Mz носят название изгибающих. Эти шесть внутренних усилий могут быть найдены из шести уравнений равновесия тела в пространстве, составленных для рассматриваемой части бруса. Уравнения составляются применительно к недеформированному телу, если наблюдаются малые изменения его размеров и формы. Принятие такого допущения значительно упрощает задачу, уравнения становятся линейными, что позволяет пользоваться принципом независимости действия сил (принципом наложения). Последний гласит, что результат совместного воздействия на тело системы сил равен сумме частных результатов воздействия каждой силы в отдельности.
Рис. 2.2
Каждому из внутренних усилий соответствует свой вид деформирования тела: N − растяжение (сжатие), Qy и Qz − сдвиг, Т − кручение, Му и Мz − изгиб. Эти деформации, как правило, возникают в различных сочетаниях. Продольная сила считается положительной, если ее направление совпадает с направлением внешней нормали к сечению. Крутящий момент принимается положительным, если при взгляде в торец отсеченной части бруса со стороны его внешней нормали он представляется направленным по ходу часовой стрелки. Изгибающий момент считается положительным, когда на левом торцe правой части бруса он направлен по ходу часовой стрелки, а на правом торце левой части − против хода часовой стрелки. Поперечная сила положительна, если она стремится вращать отсеченную часть бруса (на которую она действует) по ходу часовой стрелки относительно любой точки на внутренней нормали к сечению. Положительные знаки усилий показаны на рис.2.2.
При определении знаков внутренних усилий в вертикальных брусьях необходимо какой-то конец бруса (нижний или верхний) принимать в качестве левого и отмечать его на чертеже каким-либо значком.
Итак, внутренние усилия в сечении есть функции параметров, определяющих положение сечения в теле, и нагрузок по одну сторону от сечения. Эти функции могут быть представлены аналитически или графически. График, показывающий изменение внутреннего усилия в зависимости от положения сечения, называется эпюрой. Ординаты усилий в определенном масштабе откладывают от линии, соответствующей оси бруса.