
- •Сопротивление материалов
- •Раздел I. Методологические основы расчёта
- •Раздел II. Исследование напряженно-деформи-
- •Раздел III. Стержневые системы. . . . . . . . . 146
- •12. Расчёт статически неопределимых сисстем
- •Раздел IV. Динамическое и циклическое
- •15. Прочность материалов при циклически
- •Раздел V. Методические указания и задачи для
- •Основные обозначения
- •Раздел I. Методологические основы расчёта элементов конструкций.
- •1. Основные понятия
- •2. Внутренние силы
- •Метод сечений
- •2.2. Вычисление внутренних усилий и построение их эпюр
- •2.3. Дифференциальные уравнения равновесия для внутренних усилий в поперечных сечениях стержней
- •Практикум
- •Вопросы для повторения
- •Контрольные тесты
- •3. Геометрические характеристики плоских сечений
- •3.1. Основные понятия
- •3.2. Моменты инерции простейших фигур
- •3.3. Зависимости между моментами инерции относительно параллельных осей
- •3.4 Главные оси и главные
- •3.5. Практикум
- •Контрольные тесты
- •4. Напряжения и деформации
- •4.1. Понятие о напряжениях, связь с внутренними усилиями в брусе
- •4.2. Плоское напряженное состояние
- •4.3. Перемещения и деформации
- •4.4 Практикум Примеры
- •Вопросы для повторения
- •Контрольные тесты
- •5. Механические свойства материалов. Физические уравнения
- •5.1. Постановка эксперимента
- •5.2. Диаграммы растяжения и основные механические характеристики материалов
- •5.3. Диаграммы сжатия. Особенности разрушения при сжатии
- •5.4. Соотношения упругости
- •5.5. Линейный физический закон
- •5.6. Соотношения пластичности
- •5.7 Практикум
- •Тесты для повторения
- •Контрольные тесты
- •6. Модели предельного состояния
- •6.1. Модели предельного состояния в локальной области
- •6.2. Модели разрушения
- •6.3. Методы поверочных расчетов
- •6.4 Практикум
- •Раздел II. Исследование напряженно-
- •7. Растяжение сжатие
- •7.1. Основные предпосылки
- •7.2. Растяжение (сжатие) прямого бруса постоянного сечения
- •7.3. Влияние собственного веса конструкции
- •7.4. Композитный брус
- •7.5. Поверочные и проектные расчеты
- •7.6 Практикум Примеры
- •Вопросы для повторения
- •Контрольные тесты
- •8. Сдвиг
- •8.1 Основные положения
- •8.2. Практические расчёты соединений, работающих на сдвиг.
- •8.3 Практикум Примеры
- •Вопросы для повторения
- •9. Кручение
- •9.1. Основные понятия
- •9.2. Напряженно-деформированное состояние круглого бруса
- •9.3. Поверочные и проектные расчеты
- •9.4 Практикум
- •Контрольные тесты
- •10. Изгиб
- •10.1 . Плоский изгиб волокна
- •10.2. Чистый прямой изгиб призматического бруса
- •10.3. Поперечный изгиб
- •10.4. Поверочные и проектные расчеты
- •10.5 Перемещение при изгибе. Метод начальных параметров.
- •10.6. Композитный брус
- •10.7. Предельное сопротивление балки
- •Практикум
- •Вопросы для повторения
- •Контрольные тесты
- •11. Сложное сопротивление
- •11.1. Общие понятия
- •11.2. Чистый косой изгиб призматического бруса
- •11.3. Чистый изгиб с растяжением (сжатием)
- •11.4. Изгиб с кручением брусьев круглого сечения
- •11.5. Расчёт безмоментных оболочек вращения
- •11.6 Практикум
- •Раздел III. Стержневые системы
- •12. Расчёт статически неопределимых систем методом сил
- •12.1 Основная система и сущность метода
- •12.2. Определение перемещений методом Мора
- •12.3 Канонические уравнения
- •12.4 Построение эпюр внутренних усилий
- •12.5 Практикум
- •13. Расчет сжатых стержней на устойчивость
- •13.1. Устойчивые и неустойчивые формы равновесия
- •13.2. Формула Эйлера для критической силы
- •13.3. Влияние способа закрепления концов стержня на критическую силу
- •13.4. Подбор сечения по условиям безопасной устойчивости
- •13.5 Продольно поперечный изгиб сжатых стержней.
- •13.6 Практикум
- •Раздел IV. Динамическое и циклическое нагружение
- •14.1. Движение тела с ускорением
- •14.2 Ударная нагрузка на стержень
- •14.3 Колебания системы с одной степенью свободы
- •14.4 Практикум
- •15. Прочность материалов при циклических напряжениях
- •15.1. Основные понятия
- •15.2. Факторы, влияющие на величину предела выносливости
- •15.3 Практикум.
- •Раздел V. Методические указания и задачи для самосто-ятельного решения и контрольных работ
- •V.1. Методические указания к выполнению задания
- •V.2. Контрольное задание №1
- •Задача 3.2
- •Задача 3.4
- •308012, Г. Белгород, ул. Костюкова, 46
5.5. Линейный физический закон
В упругом анизотропном теле каждый из компонентов напряжений может зависеть от всех составляющих деформаций:
……………………………
Ограничиваясь малыми деформациями, связь между напряжениями и деформациями можно принять линейной:
…………………………………………..
где А11, А12,…, А66 – жесткости линейно-упругого состояния тела (упругие жесткости). Эти зависимости называются уравнениями обобщенного закона Гука в прямой форме. Прообразом является физический закон, обнаруженный Р. Гуком из опыта при одноосном напряженном состоянии тела.
Обратные соотношения имеют вид
…………………………………………..
где B11, В12,…, B66 – податливости линейно-упругого состояния тела (упругие податливости). Чем больше Аij, тем (при неизменности деформаций) бóльшими будут напряжения, т.е. тем жестче тело. Чем больше Вij, тем (при неизменности напряжений) бóльшими будут деформации, т.е. тем податливее тело.
Обобщенный закон Гука можно представить в матричной форме:
где
–
тензор напряжений;
–
тензор деформаций;
Матрица D называется матрицей упругих жесткостей (матрицей упругости). Обратная матрица D-1 по смыслу является матрицей упругих податливостей.
Поскольку упругому телу присущи обратимые процессы деформирования, то при использовании потенциальной функции напряжений можно обнаружить, что Аij = Аji. Следовательно, коэффициенты, расположенные симметрично относительно главной диагонали матрицы, попарно равны между собой. Тогда в анизотропном теле число упругих постоянных оказывается равным 21.
Предположим, что одна из координатных плоскостей, например, плоскость хОу, является плоскостью симметрии упругих свойств. Тогда следует заменить τxz и τyz на (–τxz) и (–τyz) соответственно, а γxz и γyz – на (–γxz) и (–γyz). При неизменности физических соотношений ряд коэффициентов обращается в нуль:
A15 = A16 = A25 = A26 = A35 = A36 = A45 = A46 = 0.
Так, число упругих постоянных при наличии только одной плоскости симметрии сокращается до 13.
В случае, если через каждую точку тела проходят три ортогональные плоскости симметрии упругих свойств (ортотропное тело), число независимых постоянных снижается до 9 (А14 = А24 = А34 = А56= 0).
Примерами ортотропных материалов служат дерево, фанера, железобетон, армированные пластики, холодный прокат черных металлов.
В случае полной симметрии (изотропное тело), когда любая плоскость есть плоскость упругой симметрии, имеем следующие физические уравнения:
Упругие постоянные E, v и G взаимосвязаны. Это можно показать на примере вычисления деформации сдвига
при совмещении осей x и y с главными осями 1 и 2:
Имея
в виду, что
получаем
Следовательно, изотропное тело имеет две упругие постоянные, в качестве которых можно принять, например, модуль продольной упругости Е и коэффициент Пуассона v. Величина G называется модулем сдвига.
Запишем выражения для напряжений:
С учетом этих зависимостей вычислим удельную потенциальную энергию деформаций путем интегрирования
в
пределах от 0 до εx,…
при
где:
Выразив деформации через напряжения, получим
По физическому смыслу упомянутое выше интегрирование сводится к вычислению площадей треугольников на линейном участке диаграммы "напряжение − деформация", ограниченном деформациями εx,…,γzx соответственно:
Следовательно, удельная потенциальная энергия деформации, накапливае-мая в упругом теле, равна полусумме произведений компонентов напряжений на соответствующие им компоненты деформации. Этот факт тесно связан с энергетической теоремой Клапейрона для линейно деформирующегося тела, в связи с чем соответствующую зависимость называют формулой Клапейрона.
Введем
величины
и
и
предста-вим рассматриваемую энергию в
виде двух составляющих.
Удельная потенциальная энергия изменения объема равна
или
Удельная потенциальная энергия изменения формы равна
или