
- •Сопротивление материалов
- •Раздел I. Методологические основы расчёта
- •Раздел II. Исследование напряженно-деформи-
- •Раздел III. Стержневые системы. . . . . . . . . 146
- •12. Расчёт статически неопределимых сисстем
- •Раздел IV. Динамическое и циклическое
- •15. Прочность материалов при циклически
- •Раздел V. Методические указания и задачи для
- •Основные обозначения
- •Раздел I. Методологические основы расчёта элементов конструкций.
- •1. Основные понятия
- •2. Внутренние силы
- •Метод сечений
- •2.2. Вычисление внутренних усилий и построение их эпюр
- •2.3. Дифференциальные уравнения равновесия для внутренних усилий в поперечных сечениях стержней
- •Практикум
- •Вопросы для повторения
- •Контрольные тесты
- •3. Геометрические характеристики плоских сечений
- •3.1. Основные понятия
- •3.2. Моменты инерции простейших фигур
- •3.3. Зависимости между моментами инерции относительно параллельных осей
- •3.4 Главные оси и главные
- •3.5. Практикум
- •Контрольные тесты
- •4. Напряжения и деформации
- •4.1. Понятие о напряжениях, связь с внутренними усилиями в брусе
- •4.2. Плоское напряженное состояние
- •4.3. Перемещения и деформации
- •4.4 Практикум Примеры
- •Вопросы для повторения
- •Контрольные тесты
- •5. Механические свойства материалов. Физические уравнения
- •5.1. Постановка эксперимента
- •5.2. Диаграммы растяжения и основные механические характеристики материалов
- •5.3. Диаграммы сжатия. Особенности разрушения при сжатии
- •5.4. Соотношения упругости
- •5.5. Линейный физический закон
- •5.6. Соотношения пластичности
- •5.7 Практикум
- •Тесты для повторения
- •Контрольные тесты
- •6. Модели предельного состояния
- •6.1. Модели предельного состояния в локальной области
- •6.2. Модели разрушения
- •6.3. Методы поверочных расчетов
- •6.4 Практикум
- •Раздел II. Исследование напряженно-
- •7. Растяжение сжатие
- •7.1. Основные предпосылки
- •7.2. Растяжение (сжатие) прямого бруса постоянного сечения
- •7.3. Влияние собственного веса конструкции
- •7.4. Композитный брус
- •7.5. Поверочные и проектные расчеты
- •7.6 Практикум Примеры
- •Вопросы для повторения
- •Контрольные тесты
- •8. Сдвиг
- •8.1 Основные положения
- •8.2. Практические расчёты соединений, работающих на сдвиг.
- •8.3 Практикум Примеры
- •Вопросы для повторения
- •9. Кручение
- •9.1. Основные понятия
- •9.2. Напряженно-деформированное состояние круглого бруса
- •9.3. Поверочные и проектные расчеты
- •9.4 Практикум
- •Контрольные тесты
- •10. Изгиб
- •10.1 . Плоский изгиб волокна
- •10.2. Чистый прямой изгиб призматического бруса
- •10.3. Поперечный изгиб
- •10.4. Поверочные и проектные расчеты
- •10.5 Перемещение при изгибе. Метод начальных параметров.
- •10.6. Композитный брус
- •10.7. Предельное сопротивление балки
- •Практикум
- •Вопросы для повторения
- •Контрольные тесты
- •11. Сложное сопротивление
- •11.1. Общие понятия
- •11.2. Чистый косой изгиб призматического бруса
- •11.3. Чистый изгиб с растяжением (сжатием)
- •11.4. Изгиб с кручением брусьев круглого сечения
- •11.5. Расчёт безмоментных оболочек вращения
- •11.6 Практикум
- •Раздел III. Стержневые системы
- •12. Расчёт статически неопределимых систем методом сил
- •12.1 Основная система и сущность метода
- •12.2. Определение перемещений методом Мора
- •12.3 Канонические уравнения
- •12.4 Построение эпюр внутренних усилий
- •12.5 Практикум
- •13. Расчет сжатых стержней на устойчивость
- •13.1. Устойчивые и неустойчивые формы равновесия
- •13.2. Формула Эйлера для критической силы
- •13.3. Влияние способа закрепления концов стержня на критическую силу
- •13.4. Подбор сечения по условиям безопасной устойчивости
- •13.5 Продольно поперечный изгиб сжатых стержней.
- •13.6 Практикум
- •Раздел IV. Динамическое и циклическое нагружение
- •14.1. Движение тела с ускорением
- •14.2 Ударная нагрузка на стержень
- •14.3 Колебания системы с одной степенью свободы
- •14.4 Практикум
- •15. Прочность материалов при циклических напряжениях
- •15.1. Основные понятия
- •15.2. Факторы, влияющие на величину предела выносливости
- •15.3 Практикум.
- •Раздел V. Методические указания и задачи для самосто-ятельного решения и контрольных работ
- •V.1. Методические указания к выполнению задания
- •V.2. Контрольное задание №1
- •Задача 3.2
- •Задача 3.4
- •308012, Г. Белгород, ул. Костюкова, 46
5.4. Соотношения упругости
В двух предыдущих главах рассматривались закономерности напряженного и деформированного состояний, отражающих две стороны одного и того же явления. Результаты механических испытаний материалов составляют основу физических уравнений, устанавливающих связь между напряжениями и деформациями.
Напряжения в упругом теле образуют физическое силовое поле, которое можно охарактеризовать некоторой потенциальной функцией (потенциалом), позволяющей выразить компоненты напряжения в виде производных. Опыты показали, что для создания напряженного состояния необходимо затратить энергию, которая переходит во внутреннюю механическую энергию. Ее накопление связывают с работой внутренних сил.
На бесконечно малом этапе деформирования с приращениями деформаций dεх,…,dγzx работу внутренних сил можно вычислить как произве-
дение постоянной силы на путь с точностью до бесконечно малых второго порядка. Выделим из тела бесконечно малый параллелепипед с ребрами dx, dy, dz. Бесконечно малым площадкам можно приписывать постоянные напряжения и перемещения.
Работа внутренних продольных сил, которым соответствуют напряжения σx (рис. 5.6, а или рис. 5.6, б), вычисляется как произведение силы σхdydz на перемещение dεxdx т.е. σхdεxdxdydz. Аналогично вычисляется работа двух других продольных сил: σydεydxdydz, σzdεzdxdydz .
Работа внутренних сдвигающих сил, которым соответствуют напряжения τху (рис. 5.7,а или 5.7,б), вычисляется как произведение силы τхуdydz на перемеще-ния dγxydx, т.е. τхуdγxydxdydz. Аналогично вычисляется работа двух других сдвигающих сил: τyzdγyzdxdydz, τzxdγzxdxdydz.
Элементарная удельная работа внутренних сил dũ (работа на бесконечно малом этапе деформирования, приходящаяся на единицу объема) есть сумма полученных величин работ, разделенная на объем бесконечно малого параллелепипеда dxdydz:
а а
б
б
Рис. 5.6 Рис. 5.7
В упругом теле удельная работа внутренних сил не зависит от пути дости-жения того или иного деформированного состояния, а является функцией лишь окончательных значений деформации:
ũ=ũ(εx, εy, εz, γxy, γyz, γzx).
Приращение этой функции с точностью до бесконечно малых второго порядка можно заменить ее полным дифференциалом:
Сравнивая два выражения для dũ и учитывая независимость приращений деформаций, получаем соотношения:
которые позволяют считать ũ потенциалом. Эти соотношения называются формулами Грина (по имени английского ученого, впервые их получившего). Они применимы как для линейно-, так и для нелинейно-упругого тела при малых деформациях.
Предполагалось, что в недеформированном состоянии напряжения равны нулю. После снятия нагрузки тело приходит в свое естественное недеформированное состояние и, следовательно, восстанавливает свою первоначальную форму. Происходит это за счет накопленной данным материалом потенциальной энергии деформации, численно равной работе внутренних сил.
Вследствие этого удельная потенциальная энергия деформации ū также должна рассматриваться как упругий потенциал поля напряжений. Следовательно,
П
отенциал
линейной теории деформирования
представляется многочленом второй
степени. Потенциал поля напряжений,
представленный многочленом третьей
степени по инвариантам тензора
дефор-маций, соответствует квадратичной
форме физичес-кого закона, т.е. физической
нелинейности низшего порядка.
Введем в рассмотрение удельную дополнительную энергию (энергию напряжений), элементарная вели-чина которой
В
геометрическом смысле энергия
является
Рис.
5.8 дополнением энергии
,
поскольку вместе они составляют
прямоугольник, изображенный на рис.
5.8. При линейном физическом законе
Приращение этой функции можно заменить ее полным дифференциалом:
.
Соотношения
называются формулами Кастильяно.