
- •Сопротивление материалов
- •Раздел I. Методологические основы расчёта
- •Раздел II. Исследование напряженно-деформи-
- •Раздел III. Стержневые системы. . . . . . . . . 146
- •12. Расчёт статически неопределимых сисстем
- •Раздел IV. Динамическое и циклическое
- •15. Прочность материалов при циклически
- •Раздел V. Методические указания и задачи для
- •Основные обозначения
- •Раздел I. Методологические основы расчёта элементов конструкций.
- •1. Основные понятия
- •2. Внутренние силы
- •Метод сечений
- •2.2. Вычисление внутренних усилий и построение их эпюр
- •2.3. Дифференциальные уравнения равновесия для внутренних усилий в поперечных сечениях стержней
- •Практикум
- •Вопросы для повторения
- •Контрольные тесты
- •3. Геометрические характеристики плоских сечений
- •3.1. Основные понятия
- •3.2. Моменты инерции простейших фигур
- •3.3. Зависимости между моментами инерции относительно параллельных осей
- •3.4 Главные оси и главные
- •3.5. Практикум
- •Контрольные тесты
- •4. Напряжения и деформации
- •4.1. Понятие о напряжениях, связь с внутренними усилиями в брусе
- •4.2. Плоское напряженное состояние
- •4.3. Перемещения и деформации
- •4.4 Практикум Примеры
- •Вопросы для повторения
- •Контрольные тесты
- •5. Механические свойства материалов. Физические уравнения
- •5.1. Постановка эксперимента
- •5.2. Диаграммы растяжения и основные механические характеристики материалов
- •5.3. Диаграммы сжатия. Особенности разрушения при сжатии
- •5.4. Соотношения упругости
- •5.5. Линейный физический закон
- •5.6. Соотношения пластичности
- •5.7 Практикум
- •Тесты для повторения
- •Контрольные тесты
- •6. Модели предельного состояния
- •6.1. Модели предельного состояния в локальной области
- •6.2. Модели разрушения
- •6.3. Методы поверочных расчетов
- •6.4 Практикум
- •Раздел II. Исследование напряженно-
- •7. Растяжение сжатие
- •7.1. Основные предпосылки
- •7.2. Растяжение (сжатие) прямого бруса постоянного сечения
- •7.3. Влияние собственного веса конструкции
- •7.4. Композитный брус
- •7.5. Поверочные и проектные расчеты
- •7.6 Практикум Примеры
- •Вопросы для повторения
- •Контрольные тесты
- •8. Сдвиг
- •8.1 Основные положения
- •8.2. Практические расчёты соединений, работающих на сдвиг.
- •8.3 Практикум Примеры
- •Вопросы для повторения
- •9. Кручение
- •9.1. Основные понятия
- •9.2. Напряженно-деформированное состояние круглого бруса
- •9.3. Поверочные и проектные расчеты
- •9.4 Практикум
- •Контрольные тесты
- •10. Изгиб
- •10.1 . Плоский изгиб волокна
- •10.2. Чистый прямой изгиб призматического бруса
- •10.3. Поперечный изгиб
- •10.4. Поверочные и проектные расчеты
- •10.5 Перемещение при изгибе. Метод начальных параметров.
- •10.6. Композитный брус
- •10.7. Предельное сопротивление балки
- •Практикум
- •Вопросы для повторения
- •Контрольные тесты
- •11. Сложное сопротивление
- •11.1. Общие понятия
- •11.2. Чистый косой изгиб призматического бруса
- •11.3. Чистый изгиб с растяжением (сжатием)
- •11.4. Изгиб с кручением брусьев круглого сечения
- •11.5. Расчёт безмоментных оболочек вращения
- •11.6 Практикум
- •Раздел III. Стержневые системы
- •12. Расчёт статически неопределимых систем методом сил
- •12.1 Основная система и сущность метода
- •12.2. Определение перемещений методом Мора
- •12.3 Канонические уравнения
- •12.4 Построение эпюр внутренних усилий
- •12.5 Практикум
- •13. Расчет сжатых стержней на устойчивость
- •13.1. Устойчивые и неустойчивые формы равновесия
- •13.2. Формула Эйлера для критической силы
- •13.3. Влияние способа закрепления концов стержня на критическую силу
- •13.4. Подбор сечения по условиям безопасной устойчивости
- •13.5 Продольно поперечный изгиб сжатых стержней.
- •13.6 Практикум
- •Раздел IV. Динамическое и циклическое нагружение
- •14.1. Движение тела с ускорением
- •14.2 Ударная нагрузка на стержень
- •14.3 Колебания системы с одной степенью свободы
- •14.4 Практикум
- •15. Прочность материалов при циклических напряжениях
- •15.1. Основные понятия
- •15.2. Факторы, влияющие на величину предела выносливости
- •15.3 Практикум.
- •Раздел V. Методические указания и задачи для самосто-ятельного решения и контрольных работ
- •V.1. Методические указания к выполнению задания
- •V.2. Контрольное задание №1
- •Задача 3.2
- •Задача 3.4
- •308012, Г. Белгород, ул. Костюкова, 46
4.3. Перемещения и деформации
Твердое
тело, как правило, закреплено. В таком
случае перемещение точки тела
вызывается только его деформированием.
Это перемещение характеризуется вектором
с проекциями u,
v,
w
на оси x,
у, z,
являющимися функциями координат: u
= u(x,
у, z),
v
= v(x,
у, z),
w
=
w(x,
у,
z).
В силу сплошности тела эти функции и их
частные производные требуемого порядка
по x,
у, z
непрерывны, кроме, возможно, особых
точек, линий или поверхностей.
Элементарный параллелепипед, вырезанный в окрестности какой-либо точки, деформируется таким образом, что изменяется длина его ребер и искажаются первоначально прямые углы между гранями, т.е. изменяются объем и форма.
Д
ля
определения линейной деформации в
точке А
вдоль оси n
(рис.4.4) возьмем в теле на этой оси малый
отрезок АВ.
После деформирования тела он обратится
в отрезок А'В',
составляющий с отрезком АВ
угол ∆α, и будет иметь длину ∆l'.
Исходя из незначительного изменения
геометрических характеристик тела
в результате деформирования, можно
считать Рис. 4.4
угловое перемещение (угол поворота) ∆α малым по сравнению с единицей, так что cos∆α ≈ 1. Величина ∆λ = ∆l' – ∆l представляет собой абсолютное изменение первоначальной длины отрезка АВ. Величина ∆λ/∆l есть средняя линейная деформация вдоль оси n в точке А.
Уменьшая размеры отрезка, в пределе получаем
Безразмерная величина εn есть истинная линейная деформация вдоль оси n в точке А.
Полагая, что λ − непрерывная функция l, получим
εn = ∂ λ /∂l.
Если λ зависит от одной переменной l, то
εn = dλ /dl.
Для определения деформации сдвига в точке А в плоскости mn возьмем на этой плоскости два малых отрезка АВ и АС, пересекающихся в точке А под углом 90°. После деформирования тела они обратятся в отрезки А'В' и А'С' с
иным углом пересечения и расположатся в другой плоскости m'n', составляющей с первоначальной угол ∆α. Принимая, как и раньше, cos∆α ≈ 1, определим деформацию сдвига как разность величин углов В'А'С' и ВАС. Наложим угол В'А'С' на угол ВАС (рис.4.5) и установим углы поворота отрезков относительно своих первоначальных положений – α1 и α2. Величина α1 + α2 = γmn и есть деформация сдвига в точке А в плоскости mn.
П
оложительными
принимают линейную деформа-цию,
соответствующую растяжению, и деформацию
сдвига, отвечающую уменьшению
первоначального угла пересечения
отрезков.
Полагая деформации малыми, мы можем в дальнейшем пренебрегать ими по сравнению с едини-цей, а также их высокими степенями по сравнению с первой степенью.
Рис. 4.5 Деформированное состояние в точке – состояние тела в окрестности данной точки, определяемое совокупностью деформаций всех линейных элементов, проходящих через данную точку. В случае малых деформаций оно полностью определяется линейными деформациями трех взаимно перпендикулярных линейных элементов тела, проходящих через данную точку, и тремя деформациями сдвига этих линейных элементов. Соответствующие шесть независимых скалярных величин определяют тензор деформаций:
З
десь
(при γyx=γxy),…Последнее
оправдывается идентичностью трех
ситуаций для грани деформированного
параллелепипе-да, что видно, например,
из рис. 4.6 (в плоскости xy).
Рис. 4.6
Главные оси деформации – три взаимно перпендикулярные прямые, прохо-дящие через данную точку тела и совпадающие по направлениям с такими тре-мялинейными элементами тела, которые остаются взаимно перпендикулярны-ми и после деформации. Линейные деформации по направлениям этих осей на-
зываются главными деформациями и обозначаются ε1, ε2, ε3 (ε1 ≥ ε2 ≥ ε3).
Кинематические
граничные условия
на части поверхности тела с заданным
вектором перемещений
имеют
вид