Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК Статистика .docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
2.34 Mб
Скачать

4. Определение объема выборки

Необходимый объем выборки (n) с заранее заданным значением допустимой ошибки, которая с определенной вероятностью обеспечит заданную точность результатов наблюдения, устанавливают, исходя из формул ошибок выборки (табл. 3).

Пример 5. Численность сотрудников таможенного органа — 342 человека. В порядке случайной бесповторной выборки предполагается определить средний размер денежного довольствия сотрудника таможенного органа при условии, что средняя ошибка не должна превышать 100 руб. с вероятностью 0,954 и при среднем квадратическом отклонении 1563 руб. (ошибка и среднее квадратическое отклонение найдены на основе пробного обследования).

Так как при p =0,954, t = 2, необходимая численность выборки равна:

Следовательно, для обследования при заданных условиях необходимо отобрать 253 человека

Таблица 3.

Формулы ошибок выборки

Тема 1.7. Статистическое изучение взаимосвязи социально-экономических явлений

Вопросы темы:

1. Виды статистической связи

2. Методы изучения статистической связи

1. Виды статистической связи

Изучение взаимосвязей на рынке товаров и услуг - важнейшая функция работников коммерческих служб: менеджеров, коммерсантов, экономистов. Особую актуальность оно приобретает в условиях развивающейся рыночной экономики. Изучение механизма рыночных связей, взаимодействия спроса и предложения, влияния объема и состава предложения товаров на объем и структуру товарооборота, формирования товарных запасов, издержек обращения, прибыли и других качественных показателей имеет первостепенное значение для прогнозирования конъюнктуры рынка, рациональной организации торговых процессов и решения многих вопросов успешного ведения бизнеса.

Статистика призвана изучать коммерческую деятельность с количественной стороны. Это осуществляется с помощью соответствующих приемов и методов статистики и математики.

Статистические показатели коммерческой деятельности могут состоять между собой в следующих основных видах связи: балансовой, компонентной, факторной и др.

Балансовая связь характеризует зависимость между источниками формирования ресурсов (средств) и их использованием:

Он + П =В + Ок,

где Он - остаток товаров на начало отчетного периода;

П - поступление товаров за период;

В - выбытие товаров в изучаемом периоде;

Ок - остаток товаров на конец отчетного периода.

Левая часть формулы (Он + П) характеризует предложение товаров, а правая часть (В + Ок) - использование товарных ресурсов.

Компонентные связи показателей коммерческой деятельности характеризуются тем, что изменение статистического показателя определяется изменением компонентов, входящих в этот показатель как множители: a = bc.

Факторные связи характеризуются тем, что они проявляются в согласованной вариации изучаемых показателей. При этом одни показатели выступают как факторные, а другие - как результативные.

Факторные связи могут рассматриваться как функциональные и корреляционные.

При функциональной связи изменение результативного признака y всецело зависит от изменения факторного признака x:

y = f (x) .

При корреляционной связи изменение результативного признака y не всецело, а лишь частично зависит от факторного признака x, так как возможно влияние прочих факторов :

y= a + f (x) .

Примером корреляционной связи показателей коммерческой деятельности может служить зависимость сумм издержек обращения от объема товарооборота. В этой связи помимо факторного признака (объема товарооборота x) на результативный признак (сумму издержек обращения y) влияют и другие факторы, в том числе не учтенные. Поэтому корреляционные связи не являются полными (тесными) зависимостями.

Характерная особенность корреляционных связей заключается в том, что они проявляются не в единичных случаях, а в массе.

Регрессия - это функция f (х1; х2; …; хт), которая отражает зависимость средней величины результативного признака от заданных фиксированных значений факторных признаков.

Для выбора вида уравнения можно ориентироваться на график эмпирической линии связи. Наибольшее распространение получили следующие типы функций:

■ линейная yx = a0 + a1x ;

■ парабола второго порядка yx = a0 + a1x + a2x2 ;

гипербола

показательная

Для установления достоверности уравнения регрессии рассчитываются ошибка аппроксимации и коэффициент детерминации. Если величина ошибки не превышает 10 - 15%, то данное уравнение может быть использовано для практических целей.

При статистическом изучении корреляционной связи показателей коммерческой деятельности перед статистикой ставятся следующие основные задачи:

■ проверка положений экономической теории о возможности связи между изучаемыми показателями и придание выявленной связи аналитической формы зависимости;

■ определение количественных оценок тесноты связи, характеризующих силу влияния факторных признаков на результативные.

Для того чтобы установить, есть ли зависимость между величинами, используются разнообразные статистические методы, позволяющие определить, во-первых, вид связи; во-вторых, тесноту связи (в одном случае она сильная, устойчивая, в другом -слабая); в-третьих, форму связи (т. е. формулу, связывающую величины x и y).

В процессе изучения связи нужно учитывать, что мы используем математический аппарат, но всегда следует иметь теоретические обоснования той связи, которую пытаются показать.