
- •Введение
- •1 Лекция 1. Сигнал, информация и сообщение.
- •1.1 Сообщение как случайный процесс
- •1.2. Формы представления детерминированных сигналов.
- •1.2.1. Временная форма
- •1.3 Мера Хартли. Количественная оценка информации
- •2 Лекция 2. Дискретный канал без помех
- •2.1. Понятие информации
- •2.2 Дискретный канал передачи информации без помех
- •2.3 Пропускная способность канала
- •2.4 Теоремы для пропускной способности канала без помех
- •2.5 Математическая модель дискретного канала без помех
- •3 Лекция 3. Дискретный канал с помехами
- •3.1 Понятие помехи
- •3.2. Виды помех
- •4 Лекция 4. Дискретный канал передачи информации с помехами
- •4.1 Дискретный канал передачи информации с помехами
- •4.2 Пропускная способность канала с помехами
- •4.3 Теоремы для пропускной способности канала с помехами
- •4.4 Математическая модель дискретного канала с помехами
- •5 Лекция 5. Принципы дискретизации и восстановление информации
- •5.1 Представление информации в непрерывном виде
- •5.2 Принципы дискретизации и восстановление информации
- •5.3 Критерии качества восстановления.
- •6 Лекция 6. Непрерывный канал
- •6.1 Разложение непрерывного сигнала в ортогональные ряды
- •6.2 Ряды Фурье и их применение в технике связи
- •6.3 Теорема Котельникова (Основная теорема Шеннона)
- •6.4 Пропускная способность непрерывного канала (без помех и с помехами)
- •6.5 Модель нкс
- •7 Лекция 7. Методы формирования и преобразования сигналов в системах связи
- •7.1 Методы модуляции носителей информации
- •7.2 Модуляция гармонического сигнала (несущей частоты)
- •7.3 Амплитудная (ам), частотная(чм), фазовая(фм) модуляции
- •7.3.2 Частотная модуляция
- •8 Лекция 8. Фазовая модуляция.
- •8.1 Фазовая модуляция
- •8.2 Временное, спектральное и векторное представление сигналов
- •8.3 Ширина полосы частот и различие в спектрах чм и фм сигналов
- •9 Лекция 9. Импульсная модуляция.
- •9.2 Методы дискретной модуляции.
- •10.2 Избыточность сообщений
- •10.3 Теорема об эффективном кодировании.
- •11 Лекция 11. Помехоустойчивые корректирующие коды.
- •11.1. Общие сведения.
- •11.2 Блоковые коды
- •11.2.1. Общие принципы использования избыточности
- •11.2.2 Связь корректирующей способности кода с кодовым расстоянием.
- •12 Лекция 12. Коды обнаруживающие ошибки.
- •12.1 Коды обнаруживающие ошибки.
- •12.2 Математическое введение к групповым кодам
- •12.3 Построение двоичного группового кода
- •12.3.1 Определение числа избыточных символов.
- •13 Лекция 13. Помехоустойчивые корректирующие коды.
- •13.1 Составление таблиц опознавателей.
- •13.2 Определение проверочных равенств.
- •13.3 Коды Хэмминга.
- •13.4 Коды Рида-Соломона.
- •13.5 Код Голея.
- •13.6 Непрерывные коды.
- •14 Лекция 14. Циклические коды.
- •14.1 Циклические коды
- •14.2 Выбор образующего многочлена по заданному объему кода и заданной корректирующей способности.
- •15 Лекция 15. Методы построения циклических кодов.
- •15.1 Методы построения циклических кодов.
- •15.2 Декодирование цк.
- •16 Лекция 16. Теория помехоустойчивых систем
- •16 Теория помехоустойчивых систем
- •16.1 Критерии оптимального приёма сообщений
- •16.2 Синтез алгоритмов и схем оптимальных приёмников, корреляционный приёмник, приёмник с согласованным фильтром
- •17 Лекция 17. Приёмник с согласованным фильтром
- •17.1 Приёмник с согласованным фильтром (продолжение)
- •17.2 Анализ помехоустойчивости систем связи с различными видами модуляций и различными методами приема сигналов
- •18 Лекция 18. Различные методы приема сигналов
- •18.1 Фазоманипулированные сигналы
- •18.2 Сигналы с относительной фазовой манипуляцией
- •1 9 Лекция 19. Многоканальная связь
- •19. Многоканальная связь
- •19.1 Методы частотного, временного и фазового разделения сигналов
- •20 Лекция 20. Методы многоканальной связи
- •20.1 Разделение сигналов по форме
- •20.2 Комбинационное разделение
- •20.3 Цифровые методы передачи непрерывных сообщений
- •20.4 Аналого-цифровые и цифро-аналоговые преобразователи
- •21 Лекция 21. Цифровые методы модуляции
- •21.1 Дискретизация по времени и квантования
- •21.2 Импульсная - кодовая модуляция (икм)-модуляция, дифференциальная икм
- •21.3 Структура кадров икм-30
- •Содержание
5.3 Критерии качества восстановления.
Существуют следующие критерии:
1) Критерий наибольшего отклонения
где:
допускаемая погрешность восстановления,
-
max
значение
-
текущая погрешность приближения.
При этом имеется уверенность, что любые изменения исходного сигнала, включая кратковременные выбросы будут зафиксированы.
2)
Критерий СКЗ.
где:
-
дополнительная СК погрешность приближения,
-
СК погрешность приближения.
3) Интегральный критерий
-
определяется max
среднее значение за период дискретизации.
4) Вероятностный критерий
.
Задаётся
допустимый уровень
,
величина Р – вероятности того, что
текущая погрешность приближения
не
зависит от некоторого определённого
значения
.
6 Лекция 6. Непрерывный канал
Цель лекции: ознакомление c непрерывным каналом
Содержание:
а) разложение непрерывного сигнала в ортогональные ряды;
б) Ряды Фурье и их применение в технике связи;
в) теорема Котельникова (Основная теорема Шеннона);
г) пропускная способность непрерывного канала;
д) модель НКС.
6.1 Разложение непрерывного сигнала в ортогональные ряды
В теории связи для представления сигналов широко используются два частных случая разложения функций в ортогональные ряды: разложение по тригонометрическим функциям и разложение по функциям вида sin x/x. В первом случае получаем спектральное представление сигнала в виде обычного ряда Фурье, а во втором случае – временное представление в виде ряда В.А. Котельникова.
Простейшей с практической точки зрения формой выражения сигнала является линейная комбинация некоторых элементарных функций
.
(6.1)
В общем случае, сигнал представляет собой сложное колебание, поэтому возникает необходимость представить сложную функцию s(t), определяющую сигнал, через простые функции.
При изучении линейных систем такое представление сигнала весьма удобно. Оно позволяет решение многих задач расчленить на части, применяя принцип суперпозиции. Например, чтобы определить сигнал на выходе линейной системы, вычисляется реакция системы на каждое элементарное воздействие ψk(t), а затем результаты, умноженные на соответствующие коэффициенты аk легко вычислялись и не зависели от числа членов суммы. Указанным требованиям наиболее полно удовлетворяет совокупность ортогональных функций.
Функции ψ1(t), ψ2(t), . . . . , ψn(t) . (6.2)
Заданные
на интервале
,
называются ортогональными,
если
при
.
(6.3)
6.2 Ряды Фурье и их применение в технике связи
Основой спектрального анализа сигналов является представление функций времени в виде ряда или интеграла Фурье. Любой периодический сигнал s(t), удовлетворяющий условию Дирихле, может быть представлен в виде ряда по тригонометрическим функциям
где
,
(6.4)
,
(6.5)
.
(6.6)
Величина а0, выражающая среднее значение сигнала за период, называется постоянной составляющей. Она вычисляется по формуле
.
(6.7)
Весьма удобной является комплексная форма записи ряда Фурье
,
(6.8)
где
,
.
Величина Ak есть комплексная амплитуда, она находится по формуле
.
(6.9)
Соотношения (6.8) и (6.9) составляют пару дискретных преобразований Фурье. Необходимо отметить, что рядом Фурье можно представить не только периодический сигнал, но и любой сигнал конечной длительности. В последнем случае сигнал S(t) принимается периодически продолженным на всей оси времени. При этом равенство (6.4) или (6.8) представляет сигнал только на интервале его длительности (-Т/2,Т/2). Случайный сигнал (или помеха), заданный на интервале (-Т/2,Т/2), может быть также представлен рядом Фурье
,
(6.10)
где ak и bk являются случайными величинами (для флуктационной помехи – независимыми случайными с нормальным распределением).