Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект лекции ТИ.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
798.88 Кб
Скачать

13.4 Коды Рида-Соломона.

Коды РС относятся к классу недвоичных кодов БЧХ. В кодере сообщение, состоящее из k q-ичных символов, выбираемых из алфавита, содержащего q=2m символов, преобразуется в кодовое слово РС- кода, содержащее n двоичных символов. Поскольку обычно входные и выходные алфавиты равны степени 2, то входные и выходные символы могут быть представлены m- разрядными двоичными словами. Таким образом, входное сообщение можно рассматривать как km- разрядное слово, а выходное кодовое слово – как nm- разрядное двоичное слово. Длина кода РС равна n=q-1. Если исправляющая способность кода равна t ошибочным символам, то имеет место соотношение n-k=2t. Коды РС существуют при , а их расширение имеют длины блока: n= q и n= q+1.

13.5 Код Голея.

Этот код относится к числу наиболее интересных. Он позволяет исправить ошибки высокой кратности (t>1) и является также совершенным кодом. Код Голея (23,12) является циклическим и исправляет все конфигурации ошибок, кратность которых не превышает трех. С кодом Голея (23,12) связан код (24,12), который образуется добавлением к кодовым словам кода дополнительного проверочного символа. Коды (23,12) и (24,12) имеют минимальное кодовое расстояние, равное соответственно 7 и 8. Поэтому код (24,12), кроме исправления ошибок кратности 4 при незначительном изменении кода обнаруживает ошибки выше кратности 4. Код (24,12) относится к числу наиболее распространенных.

13.6 Непрерывные коды.

Из непрерывных кодов, исправляющих ошибки, наиболее известны коды Финка-Хагельбаргера, в которых контрольные символы образуются путем линейной операции над двумя или более информационными символами. Принцип построения этих кодов рассмотрим на примере простейшего цепного кода. Контрольные символы в цепном коде формируются путем суммирования символов, расположенных один относительно другого на определенном расстоянии:

eik=ci+ck; ei+1, k+1=ci+1+ck+1; …

Расстояние между информационными символами l=k-i определяет основные свойства кодов и называется шагом сложения. Число контрольных символов при таком способе кодирования равно числу информационных символов, поэтому избыточность кода æ=0,5. Важное преимущество непрерывных кодов состоит в их способности исправлять не только одиночные ошибки, но и группы ошибок. Если задержка контрольных символов выбрана равной 2l, то можно показать, что максимальная длина исправляемого пакета ошибок также равна 2l при интервале между пакетами 6l+1. Таким образом, возможность исправления длинных пакетов связана с увеличением шага сложения l, а следовательно, и с усложнением кодирующих и декодирующих устройств.

14 Лекция 14. Циклические коды.

Цель лекции: ознакомление c циклическими кодами

Содержание:

а) циклические коды;

б) свойства символического умножения;

в) требования, предъявляемые к образующему многочлену;

г) выбор образующего многочлена по заданному объему кода и заданной корректирующей способности;

д) обнаружение одиночных ошибок (d=2);

е) исправление одиночных или обнаружение двойных ошибок (d=3).