
- •Введение
- •1 Лекция 1. Сигнал, информация и сообщение.
- •1.1 Сообщение как случайный процесс
- •1.2. Формы представления детерминированных сигналов.
- •1.2.1. Временная форма
- •1.3 Мера Хартли. Количественная оценка информации
- •2 Лекция 2. Дискретный канал без помех
- •2.1. Понятие информации
- •2.2 Дискретный канал передачи информации без помех
- •2.3 Пропускная способность канала
- •2.4 Теоремы для пропускной способности канала без помех
- •2.5 Математическая модель дискретного канала без помех
- •3 Лекция 3. Дискретный канал с помехами
- •3.1 Понятие помехи
- •3.2. Виды помех
- •4 Лекция 4. Дискретный канал передачи информации с помехами
- •4.1 Дискретный канал передачи информации с помехами
- •4.2 Пропускная способность канала с помехами
- •4.3 Теоремы для пропускной способности канала с помехами
- •4.4 Математическая модель дискретного канала с помехами
- •5 Лекция 5. Принципы дискретизации и восстановление информации
- •5.1 Представление информации в непрерывном виде
- •5.2 Принципы дискретизации и восстановление информации
- •5.3 Критерии качества восстановления.
- •6 Лекция 6. Непрерывный канал
- •6.1 Разложение непрерывного сигнала в ортогональные ряды
- •6.2 Ряды Фурье и их применение в технике связи
- •6.3 Теорема Котельникова (Основная теорема Шеннона)
- •6.4 Пропускная способность непрерывного канала (без помех и с помехами)
- •6.5 Модель нкс
- •7 Лекция 7. Методы формирования и преобразования сигналов в системах связи
- •7.1 Методы модуляции носителей информации
- •7.2 Модуляция гармонического сигнала (несущей частоты)
- •7.3 Амплитудная (ам), частотная(чм), фазовая(фм) модуляции
- •7.3.2 Частотная модуляция
- •8 Лекция 8. Фазовая модуляция.
- •8.1 Фазовая модуляция
- •8.2 Временное, спектральное и векторное представление сигналов
- •8.3 Ширина полосы частот и различие в спектрах чм и фм сигналов
- •9 Лекция 9. Импульсная модуляция.
- •9.2 Методы дискретной модуляции.
- •10.2 Избыточность сообщений
- •10.3 Теорема об эффективном кодировании.
- •11 Лекция 11. Помехоустойчивые корректирующие коды.
- •11.1. Общие сведения.
- •11.2 Блоковые коды
- •11.2.1. Общие принципы использования избыточности
- •11.2.2 Связь корректирующей способности кода с кодовым расстоянием.
- •12 Лекция 12. Коды обнаруживающие ошибки.
- •12.1 Коды обнаруживающие ошибки.
- •12.2 Математическое введение к групповым кодам
- •12.3 Построение двоичного группового кода
- •12.3.1 Определение числа избыточных символов.
- •13 Лекция 13. Помехоустойчивые корректирующие коды.
- •13.1 Составление таблиц опознавателей.
- •13.2 Определение проверочных равенств.
- •13.3 Коды Хэмминга.
- •13.4 Коды Рида-Соломона.
- •13.5 Код Голея.
- •13.6 Непрерывные коды.
- •14 Лекция 14. Циклические коды.
- •14.1 Циклические коды
- •14.2 Выбор образующего многочлена по заданному объему кода и заданной корректирующей способности.
- •15 Лекция 15. Методы построения циклических кодов.
- •15.1 Методы построения циклических кодов.
- •15.2 Декодирование цк.
- •16 Лекция 16. Теория помехоустойчивых систем
- •16 Теория помехоустойчивых систем
- •16.1 Критерии оптимального приёма сообщений
- •16.2 Синтез алгоритмов и схем оптимальных приёмников, корреляционный приёмник, приёмник с согласованным фильтром
- •17 Лекция 17. Приёмник с согласованным фильтром
- •17.1 Приёмник с согласованным фильтром (продолжение)
- •17.2 Анализ помехоустойчивости систем связи с различными видами модуляций и различными методами приема сигналов
- •18 Лекция 18. Различные методы приема сигналов
- •18.1 Фазоманипулированные сигналы
- •18.2 Сигналы с относительной фазовой манипуляцией
- •1 9 Лекция 19. Многоканальная связь
- •19. Многоканальная связь
- •19.1 Методы частотного, временного и фазового разделения сигналов
- •20 Лекция 20. Методы многоканальной связи
- •20.1 Разделение сигналов по форме
- •20.2 Комбинационное разделение
- •20.3 Цифровые методы передачи непрерывных сообщений
- •20.4 Аналого-цифровые и цифро-аналоговые преобразователи
- •21 Лекция 21. Цифровые методы модуляции
- •21.1 Дискретизация по времени и квантования
- •21.2 Импульсная - кодовая модуляция (икм)-модуляция, дифференциальная икм
- •21.3 Структура кадров икм-30
- •Содержание
13 Лекция 13. Помехоустойчивые корректирующие коды.
Цель лекции: ознакомление c помехоустойчивыми корректирующими кодами.
Содержание:
а) cоставление таблиц опознавателей;
б) определение проверочных равенств;
в) Коды Хэмминга;
г) Коды Рида-Соломона;
д) Код Голея;
е) коды Финка-Хагельбаргера
13.1 Составление таблиц опознавателей.
Рассмотрим
случай обнаружения одиночных ошибок.
Допустим Q=15
тогда
,
с другой
стороны:
Из этого выражения можно получить следующую таблицу:
Инф. K |
1 |
2..4 |
5..11 |
12..26 |
27..57 |
Контр. m |
2 |
3 |
4 |
5 |
6 |
Составим таблицу соответствия вектора ошибки и опознавателей КК n=7:
0000001 |
001 |
0000010 |
010 |
0000100 |
011 |
0001000 |
100 |
0010000 |
101 |
0100000 |
110 |
1000000 |
111 |
13.2 Определение проверочных равенств.
На основе таблицы, показанной выше, составим проверочные равенства следующим образом. В проверочное равенство входят те разряды КК у которых имеется единица в соответствующем разряде определителя.
Тогда проверка №1:
.
Проверка №2 – аналогично, во втором разряде опознавателя:
.
Проверка №3 – аналогично в третьем разряде определителя:
.
Теперь нужно определить NN проверочных и информационных разрядов в КК. Нужно чтобы контрольные символы входили во все проверки только один раз. Это обеспечит независимость декодирования, т.е. значения контрольных разрядов может быть определено решением одного из проверочных равенств:
то
получим размещение:
a1 |
a2 |
a3 |
a4 |
a5 |
a6 |
a7 |
m1 |
m2 |
k1 |
m3 |
k2 |
k3 |
k4 |
Пример. Код Хэмминга d=3, n=7, k=4, m=3 KK = 1011
a1 |
a2 |
a3 |
a4 |
a5 |
a6 |
a7 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
|
|
|
|
|
|
|
то выходная КК:
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
11 |
Проверка:
Опознаватель = 101 > ошибка в разряде №5
Вектор ошибки: 0000100
Исправление ошибки: 0110111
0000100
Исправленная КК: 0110011
13.3 Коды Хэмминга.
Эти коды являются примером линейных кодов, исправляющих одну единственную ошибку. Длина блока кодов удовлетворяет соотношению n=2(n-k)-1, где n-k количество проверочных символов. Например, при n-k=3 получаем код (7,4).