
- •Введение
- •1 Лекция 1. Сигнал, информация и сообщение.
- •1.1 Сообщение как случайный процесс
- •1.2. Формы представления детерминированных сигналов.
- •1.2.1. Временная форма
- •1.3 Мера Хартли. Количественная оценка информации
- •2 Лекция 2. Дискретный канал без помех
- •2.1. Понятие информации
- •2.2 Дискретный канал передачи информации без помех
- •2.3 Пропускная способность канала
- •2.4 Теоремы для пропускной способности канала без помех
- •2.5 Математическая модель дискретного канала без помех
- •3 Лекция 3. Дискретный канал с помехами
- •3.1 Понятие помехи
- •3.2. Виды помех
- •4 Лекция 4. Дискретный канал передачи информации с помехами
- •4.1 Дискретный канал передачи информации с помехами
- •4.2 Пропускная способность канала с помехами
- •4.3 Теоремы для пропускной способности канала с помехами
- •4.4 Математическая модель дискретного канала с помехами
- •5 Лекция 5. Принципы дискретизации и восстановление информации
- •5.1 Представление информации в непрерывном виде
- •5.2 Принципы дискретизации и восстановление информации
- •5.3 Критерии качества восстановления.
- •6 Лекция 6. Непрерывный канал
- •6.1 Разложение непрерывного сигнала в ортогональные ряды
- •6.2 Ряды Фурье и их применение в технике связи
- •6.3 Теорема Котельникова (Основная теорема Шеннона)
- •6.4 Пропускная способность непрерывного канала (без помех и с помехами)
- •6.5 Модель нкс
- •7 Лекция 7. Методы формирования и преобразования сигналов в системах связи
- •7.1 Методы модуляции носителей информации
- •7.2 Модуляция гармонического сигнала (несущей частоты)
- •7.3 Амплитудная (ам), частотная(чм), фазовая(фм) модуляции
- •7.3.2 Частотная модуляция
- •8 Лекция 8. Фазовая модуляция.
- •8.1 Фазовая модуляция
- •8.2 Временное, спектральное и векторное представление сигналов
- •8.3 Ширина полосы частот и различие в спектрах чм и фм сигналов
- •9 Лекция 9. Импульсная модуляция.
- •9.2 Методы дискретной модуляции.
- •10.2 Избыточность сообщений
- •10.3 Теорема об эффективном кодировании.
- •11 Лекция 11. Помехоустойчивые корректирующие коды.
- •11.1. Общие сведения.
- •11.2 Блоковые коды
- •11.2.1. Общие принципы использования избыточности
- •11.2.2 Связь корректирующей способности кода с кодовым расстоянием.
- •12 Лекция 12. Коды обнаруживающие ошибки.
- •12.1 Коды обнаруживающие ошибки.
- •12.2 Математическое введение к групповым кодам
- •12.3 Построение двоичного группового кода
- •12.3.1 Определение числа избыточных символов.
- •13 Лекция 13. Помехоустойчивые корректирующие коды.
- •13.1 Составление таблиц опознавателей.
- •13.2 Определение проверочных равенств.
- •13.3 Коды Хэмминга.
- •13.4 Коды Рида-Соломона.
- •13.5 Код Голея.
- •13.6 Непрерывные коды.
- •14 Лекция 14. Циклические коды.
- •14.1 Циклические коды
- •14.2 Выбор образующего многочлена по заданному объему кода и заданной корректирующей способности.
- •15 Лекция 15. Методы построения циклических кодов.
- •15.1 Методы построения циклических кодов.
- •15.2 Декодирование цк.
- •16 Лекция 16. Теория помехоустойчивых систем
- •16 Теория помехоустойчивых систем
- •16.1 Критерии оптимального приёма сообщений
- •16.2 Синтез алгоритмов и схем оптимальных приёмников, корреляционный приёмник, приёмник с согласованным фильтром
- •17 Лекция 17. Приёмник с согласованным фильтром
- •17.1 Приёмник с согласованным фильтром (продолжение)
- •17.2 Анализ помехоустойчивости систем связи с различными видами модуляций и различными методами приема сигналов
- •18 Лекция 18. Различные методы приема сигналов
- •18.1 Фазоманипулированные сигналы
- •18.2 Сигналы с относительной фазовой манипуляцией
- •1 9 Лекция 19. Многоканальная связь
- •19. Многоканальная связь
- •19.1 Методы частотного, временного и фазового разделения сигналов
- •20 Лекция 20. Методы многоканальной связи
- •20.1 Разделение сигналов по форме
- •20.2 Комбинационное разделение
- •20.3 Цифровые методы передачи непрерывных сообщений
- •20.4 Аналого-цифровые и цифро-аналоговые преобразователи
- •21 Лекция 21. Цифровые методы модуляции
- •21.1 Дискретизация по времени и квантования
- •21.2 Импульсная - кодовая модуляция (икм)-модуляция, дифференциальная икм
- •21.3 Структура кадров икм-30
- •Содержание
11.2.2 Связь корректирующей способности кода с кодовым расстоянием.
Степень различия двух КК называется расстоянием между ними (по Хэммингу) т.е. кодовое расстояние:
1001101
1011011
0011110 d=7
Определяется сложением 2-х кодовых комбинаций по модулю 2.
Минимальное кодовое расстояние - определяется по всем парам кодовых комбинаций данного кода. Декодирование по методу максимального правдоподобия осуществляется следующим образом, чтобы принятая КК отождествлялась с разрешенной, которая отличается в наименьшем числе символов. При d=1 – все КК являются разрешенными.
Рассмотрим код n=3
000 001 010 011 100 101 110 111 |
пример равнодоступного кода. |
пример равнодоступного кода. Любая ошибка трансформирует КК данного кода в другую – разрешенную. Это случай - доступного кода который не обладает обнаружением и исправляющими свойствами.
При d=2
001 001 101 110 |
разрешенная КК |
001 010 100 111 |
запрещенная КК |
В общем случае для обнаруживающего кода кодовое расстояние определяется:
.
r
– число обнаруженных ошибок.
Для исправления ошибки необходимо локализовать ошибку. Т.е. разбить всю КК на не пересекающиеся множества.
Допустим разрешенные КК: 1000 -> 001 010 100
1111 -> 110 101 110
Геометрическая интерпретация блоковых корректирующих кодов. Любая n – разрядная КК может быть представлена как вершина n – мерного единичного куба, длин ребра =1
12 Лекция 12. Коды обнаруживающие ошибки.
Цель лекции: Ознакомление c помехоустойчивыми корректирующими кодами.
Содержание:
а) коды обнаруживающие ошибки;
б) математическое введение к групповым кодам;
в) избыточность сообщений;
г) построение двоичного группового кода;
д) определение числа избыточных символов.
12.1 Коды обнаруживающие ошибки.
Как
указывалось выше для обнаружения ошибки
кодовое расстояние по Хэммингу должно
быть равно:
,
где r
– число обнаруженных ошибок.
1) Примером кода с обнаружением ошибки является код с проверкой на четность
Исходная КК |
Контрольные символы |
Выходная КК |
00001 |
1 |
000011 |
00010 |
1 |
000101 |
00011 |
0 |
000110 |
00100 |
1 |
001001 |
00101 |
0 |
001010 |
2) Код с удвоением элементов (корреляционный код). Корреляционный код строится таким образом: каждый элемент двоичного кода передается двумя символами:
1 -> 10 1010011 ->
0 -> 01 -> 10011001011010.
Корреляционный код содержит в два раза больше символов чем исходный, обнаружение ошибки осуществляется таким соображениями в парных элементах должны быть разные символы, т.е. элементы 00 или 11 – бракуются. Не обнаруживаются ошибки типа:
10 –> 01
01 -> 10.
Высокая помехоустойчивость корреляционного кода достигается большой избыточностью.
Достоинства: нет постоянной составляющей т.к. число 1 = 0
3) Инверсный код
Информационные символы |
Контрольные символы |
Инверсный код |
111001 |
111001 |
111001111001 |
101111 |
010000 |
101111010000 |
(Тутевич стр.65-69.)
Линейные коды.
Линейные коды - значения проверочных символов которые определяются с использованием линейных операций над определенными информационными символами.
Обычно
проверочный символ m
=1, если
,
число
проверочных равенств, номера конкретных
входящих
в каждое проверочное равенство
определяется видом и характеристиками
кода.
При декодировании осуществляется справедливость избыточных равенств. Для двоичных линейных кодов определение также сводится к проверке на четность числа единиц, входящих в каждое равенство.
Совокупность проверок дает информацию о наличии ошибки, а в случае необходимости и NN наложенных разрядов.