Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Госы 1-30.docx
Скачиваний:
8
Добавлен:
01.04.2025
Размер:
1.2 Mб
Скачать
  1. Добровольная сертификация нитей.

  1. Оценка соответствия нормальному закону распределения полученных результатов испытаний по разрывной нагрузке крученого шелка по критерию Колмогорова.

При использовании критерия (критерия А. Н. Колмогорова) предполагается, что теоретическая функция распределения непрерывна, а эмпирическая представлена несгруппированными данными. На практике для упрощения вычислений приходится группировать значения случайной величины на небольших интер­валах. критерий можно применять, когда для гипотетического pacпpeделения полностью известны из каких-либо теоретических соображений не только вид функции распределения, но и входящие в нее параметры. Чаще всего, однако, бывает известен вид функции, параметры определяются из опыта. При использовании критерия это обстоятельство учитывают, уменьшая число степеней свободы. Критерий ? такой поправки не предусматривает, в связи с чем eго применение в большинстве случаев приводит к завышенному согласию, если параметры теоретического распределения заранее не известны. План расчета критерия: 1. Сначала находят разницу между максимальной и минимальной величинами, т.е. размах варьирования по формуле (6). 2. Определяют классовый интервал  где nk - число классов , 7<m<20. Желательно, чтобы величина k была кратной 5 или 10. 3. Разбивают полученные значения на классы, которые располагаю по возрастанию значений, и результаты представляют в таблице. Напротив наибольшего числа значений в классе отмечают условное отклонение  , от него увеличивающиеся на единицу отклонения: вниз – положительные, вверх – отрицательные. 4.Среднее значение выборки определяют по формуле:  где Х – среднее значение в классе при  = 0; k – классовый интервал; n – общее число измерений. 5. Среднее квадратическое отклонение   6. Составляем итоговая таблицу для расчета критерия Колмогорова (таблица 8).

7. Вычисляем эмпирические частости  , а также их на­копленные значения ?Wi. Значения ?Wвычисляются путем сложения величин Wтаким образом, что для каждого последующего класса оно будет равно сумме значений Wiпредыдущих классов. Таким образом, для последнего класса ?Wi=1. 8. Значения накопленных теоретических частостей W определяют по величине   для нормального распределения (таблица 9).  9. Далее по каждой строке расчетной таблицы вычисляют абсолютные значения разностей   и обозначают максимальную из них через Dm. Таблица 9

t

?W

t

?W

t

?W

- 3,1 -3,0 -2,9 -2,8 -2,7 -2,6 -2,5 -2,4 -2,3 -2,2 -2,1 -2,0 -1,9 -1,8 -1,7 -1,6

0,001 001 002 003 003 005 006 008 011 014 018 023 029 036 045 0,055

-1,5  -1,4  -1,3 -1,2 -1,1 -1,0 -0,9  -0,8 -0,7  -0,6 -0,5 -0,4  -0,3 -0,2 -0,1 0,0

0,067  081  096  115  136  159  184  212  242  274  308  345  382  421  460 0,500

0,0  0,1  0,2 0,3 0,4  0,5  0,6  0,7  0,8  0,9  1,0  1,1  1,2  1,3  1,4  1,5

0,500  540  579  618  655  691  726  758  788  816  841  864  885  903  919 0,933

Таблица 8

Границы классов

Среднее значение в классе 

Число значений в классе (частота попадания в класс) yi

Условное отклонение 

yi

yi2

?Wi

?W

10. Критерий ? основан на максимальной величине расхождения Dm, между накопленными частостями эмпирического и теоретического распределения:  (39) где n— число испытаний. Вероятности Р того, что критерий достигнет величины ? приведены в таблице 10.  Таблица 10

?

Р(?)

?

Р(?)

?

Р(?)

Р(?)

Р(?)

0,3 0,4 0,5 0,6 0,7 0,8

0,999 0,997 0,964 0,864 0,711 0,544

0,9 1,0 1,1 1,2 1,3 1,36

0,393 0,270 0,178 0,112 0,068 0,050

1,4 1,5 1,6 1,7 1,8 1,9

0,040 0,022 0,012 0,006 0,003 0,002

2,0 2,1 2,2 2,3 2,4 2,5

0,0007 0,0003 0,0001 0,0001 0,0000 0,0000

11. Если Р <q=0,05, следовательно гипотеза о соответствии результатов испытаний нормальному закону распределения отвергается. Если  попадет в критическую область, т. е. если Р окажется меньше уровня значимости q, то это свидетельствует о малой вероятности такого большого значения критерия в условиях выдвинутой нулевой гипотезы, т. е. о неправильности гипотезы согласия, нужно искать другой теоретический закон распределения и повторить проверку гипотезы близости к нему эмпирического распределения.  В программе Excel не предусмотрен расчет критерия Колмогорова с помощью встроенных функций.</m<20.