Сегмент 22. Генотип и фенотип организма. Центральная догма молекулярной биологии
Сегодня каждый школьник знает, что организм имеет наследственную (генетическую) информацию о своих внешних признаках (строении, свойствах, поведении), которая передается от родителей к детям. Большинство сумеет объяснить, что эта информация в виде генов хранится и передается в хромосомах. Многие скажут, что ген - это участок молекулы ДНК, отвечающий за отдельный признак. Кое-кто вспомнит, что ДНК обеспечивает синтез белков, которые, в основном, и формируют внешние признаки. К этому следует добавить, что совокупность генов данного организма, то есть его генетических задатков, обозначается понятием генотип (от греческого genos - род, происхождение), а то, что получается в итоге - совокупность внешних признаков организма - называется фенотипом (от греческого phaino - являю, обнаруживаю). Наиболее думающие заметят, что под «внешними признаками» подразумеваются не только структурные свойства организма - форма частей тела, окраска и т. п., но также и функциональные характеристики - скорость роста, мышечная сила, характер питания, устойчивость к болезням и многое другое, что определяется функциями белков. Наконец, самые памятливые должны подсказать нам, что фенотип зависит не только от генотипа, но и от условий среды, в которых развивается организм, и что пределы варьирования фенотипа при неизменном генотипе обозначаются как норма реакции. Вот в сущности и вся квинтэссенция молекулярной биологии развития. Но почему белкам нужна внешняя информация? Почему информация хранится в ДНК? Как реализуется и чем контролируется эта информация?
В сегменте 20 мы выяснили, что белки, как и целые клетки, организмы, стареют и разрушаются, поэтому их надо создавать заново. Синтез новых белков необходим в каждом новом поколении клеток и организмов, а в долгоживущих клетках он происходит ежедневно и ежечасно. Но каждый тип белка имеет уникальную, строго обязательную последовательность из аминокислот 20 разновидностей (первичная структура), которая должна быть воспроизведена в точности. В противном случае это будет искаженный белок или бессмысленный, не функциональный полипептид. Вот почему в каждой клетке должна быть информация о первичной структуре белков, причем эта информация должна копироваться и наследоваться, чтобы воспроизводить те же белки в поколениях. Проблемами наследования биологической информации занимается наука генетика, а также возникшая на стыке химии, биологии и генетики молекулярная биология. В понимание теоретических основ биологической информации внесла свой вклад и кибернетика.
Заметим, что представление о генах как носителях наследственных признаков и сама наука генетика возникли еще в конце XIX века. В 1865 г. чешский монах Грегор Мендель при скрещивании разных сортов гороха открыл первые законы наследования отдельных признаков, доказал дискретность признаков, то есть их раздельное, независимое друг от друга существование и наследование. Представления о том, что такое гены, Мендель не имел и не мог иметь, так как ни ДНК, ни хромосомы тогда не были известны. Поскольку результаты наблюдений Менделя были опубликованы в мало доступном издании, о них узнали уже задним числом, когда в 1900 г. те же законы были переоткрыты другими учеными. К этому же времени стало ясно, что носителем генов являются микроскопические тельца - хромосомы, содержащиеся в клеточных ядрах, хорошо окрашиваемые (отсюда и название: от греческих chroma - окраска, цвет и soma - тело) и видимые во время деления клетки. Гораздо позднее - в 40-е годы XX века состоялось открытие ДНК и ее связи с хромосомами, а в 50-60-е годы установлена структура ДНК, выяснены причинные связи ДНК и белков, то есть генотипа и фенотипа.
Итак, в середине XX века состоялись великие научные открытия, обозначившие начало молекулярно-биологической революции в естествознании. Молодые исследователи Джеймс Уотсон из США и Френсис Крик из Великобритании в 1953 году расшифровали строение молекулы ДНК - материального носителя генетической информации (см. сегмент 7 и рис. 2). Следом был раскрыт и механизм передачи информации с ДНК на синтезируемый белок. Абстрактное до сих пор понятие гена приобрело материальный смысл и получило функциональное объяснение. Принцип функционирования ДНК (гена)при реализации наследственной информации был обозначен как центральная догма молекулярной биологии.
