
- •2. Гирокомпасы с автономным чувствительным элементом
- •2.1 Использование гироскопа в качестве курсоуказателя
- •2.1.1 Горизонтная система координат и ее вращение
- •2.1.2 Видимое движение свободного гироскопа
- •2.1.3 Принцип использования гироскопа в качестве курсоуказателя
- •2.1.4. Способ превращения гироскопа в гирокомпас
- •2.2 Незатухающие колебания чувствительного элемента гирокомпаса
- •2.3 Демпфирование колебаний чэ гк методом горизонтального момента
- •2.4 Скоростная девиация гирокомпаса
- •2.5 Движение главной оси гирокомпаса при маневрировании судна. Условие апериодического перехода
- •2.5.1 Апериодический переход и его условие
- •2.6 Инерционная девиация первого и второго рода
- •2.6.1 Инерционная девиация первого рода
- •2.6.2 Инерционная девиация второго рода
- •2.7 Суммарная инерционная девиация
- •2.8 Влияние качки судна на гирокомпас. Интеркардинальая девиация
- •2.9 Снижение влияния девиации на качке
2. Гирокомпасы с автономным чувствительным элементом
2.1 Использование гироскопа в качестве курсоуказателя
2.1.1 Горизонтная система координат и ее вращение
Как было определено и доказано ранее, главная ось свободного гироскопа сохраняет неизменным первоначально заданное направление в инерциальном пространстве.
П
ользуясь
свободным ГС можно проследить суточное
вращение Земли вокруг ее оси. Так как
ось ГС сохраняет свое первоначальное
положение, а Земля вместе с наблюдателем
вращается, то наблюдатель видит, что
ось ГС поворачивается относительно
плоскостей истинного меридиана и
истинного горизонта, которые связаны
с точкой наблюдателя на поверхности
Земли.
Если в первоначальный момент ось ГС находится в меридиане и горизонтальна, то в следующий момент из-за вращения Земли она выйдет из меридиана и одновременно отклонится от горизонта.
Рис.
2.1
Горизонтная
система координат
На
рис. 2.1 изображены сферическая модель
Земли и горизонтная система координат.
Земля вращается с запада
на восток, совершая оборот за звездные
сутки. Землю принято считать шаром с
радиусом
км.
Суточное вращение Земли происходит
с угловой скоростью
сек-1.
В
Рис.
2.2 Вспомогательная
сфера
Для определения этого
вращения построим вспомогательную
сферу, поместив в точку О
место наблюдателя вместе с горизонтной
системой координат в центре этой сферы
(рис.2.2). Разложим вектор угловой скорости
вращения Земли
на составляющие:
-
вдоль направления полуденной линии NS;
-
вдоль линии отвеса zn.
Вектора , , находятся в плоскости истинного меридиана. Для величин угловых скоростей и имеем соотношения:
-
горизонтальная составляющая;
-
вертикальная составляющая.
Горизонтальная составляющая суточного вращения Земли показывает, что плоскость истинного горизонта непрерывно вращается в пространстве вокруг полуденной линии NS так, что восточная половина горизонта опускается, а западная поднимается.
Вертикальная составляющая суточного вращения Земли показывает, что для наблюдателя, расположенного в северной широте, плоскость истинного меридиана вращается в пространстве вокруг отвесной линии так, что северная часть плоскости меридиана непрерывно отходит к западу, а южная - к востоку. Для южного полушария – наоборот [7].
2.1.2 Видимое движение свободного гироскопа
Рассмотрим несколько случаев видимого движения свободного гироскопа, установленного в различных точках земной поверхности.
На рис. 2.3 изображен земной шар, если смотреть на него со стороны северного полюса PN. Стрелкой показано направление вращения Земли.
Пусть
в начальный момент (положение 1)
гироскоп находится на экваторе, его ось
Х-Х
горизонтальна и направлена по линии EW
Через некоторый промежуток времени
Земля повернется на некоторый угол β и
ось гироскопа, сохраняя неизменность
своего положения в пространстве,
отклонится относительно плоскости
истинного горизонта на такой же угол β
(положение 2). Положение 3
гироскоп займет через 6 часов. В этом
положении ось Х-Х
прибора будет расположена вертикально.
Относительно плоскости горизонта в
положении 4
она будет снова горизонтальна, а в
положении 5
- опять вертикальна.
Это
движение гироскопа будет только кажущимся
Рис.
2.3. Видимое движение свободного гироскопа,
установленного на экваторе по линии
Е-W
Е
сли
главную ось гироскопа, установленного
на экваторе, направить по линии NS (рис.
2.4), то вследствие вращения Земли ось ГС
будет поворачиваться вокруг оси Х-Х,
параллельной
оси вращения Земли, и наблюдатель не
обнаружит видимого движения ГС. Нетрудно
сообразить, что если гироскоп установить
на полюсе своей главной осью параллельно
плоскости горизонта, то она в течение
суток совершит полный видимый оборот
вокруг вертикальной оси гироскопа в
сторону, противоположную вращению
Земли.
Рис.
2.4. Видимое движение свободного гироскопа,
установленного на экваторе по линии
N-S
На рис 2.5 изображен гироскоп, расположенный в некоторой средней северной широте.
Пусть в первоначальный момент (положение 1) ГС находится в меридиане и его ось горизонтальна. Через некоторое время (положение 2) ось Х-Х прибора составит с меридианом наблюдателя некоторый угол а, так как меридиан наблюдателя повернулся в пространстве вместе с Землей, а ось Х-Х гироскопа сохранила свое первоначальное направление. Одновременно с видимым уходом из меридиана главная ось ГС будет подниматься над горизонтом, т.к. последний вращается вместе с Землей, причем его восточная половина непрерывно опускается.
Рис. 2.5. Видимое движение свободного гироскопа, установленного в северной широте
В
положении 3 ось Х-Х гироскопа вновь
окажется в плоскости меридиана, но будет
поднята над горизонтом на угол
.
Таким образом, гироскоп установленный в средней северной широте, обнаруживает уход северного конца главной оси от меридиана к востоку и от плоскости истинного горизонта вверх. Главная ось ГС в данном случае будет совершать видимые для наблюдателя незатухающие колебания с периодом суточного вращения Земли. Это движение только видимое, в действительности же в результате вращения Земли вращаются в пространстве плоскости меридиана наблюдателя и истинного горизонта, причем северная часть меридиана наблюдателя непрерывно отходит от оси Х-Х гироскопа к западу, а восточная половина горизонта опускается.
Рассмотренные ситуации показывают, что только в случае параллельности главной оси ГС оси Земли наблюдатель не обнаружит видимого движения гироскопа.
Итак, становится очевидным, что свободный гироскоп не может быть использован в качестве курсоуказателя, так как его главная ось непрерывно уходит от меридиана и одновременно наклоняется к плоскости горизонта.
Поэтому возникает задача, состоящая в том, чтобы стабилизировать главную ось гироскопа в плоскости истинного меридиана наблюдателя параллельно плоскости истинного горизонта в любой широте плавания. То есть, необходимо “заставить” гироскоп непрерывно следовать за плоскостью меридиана наблюдателя с той же скоростью, с которой она совершает свое вращение.