
- •1. Эволюция ос
- •2. Классификация ос
- •2.1. Особенности алгоритмов управления ресурсами
- •2.2. Особенности методов построения
- •2.3.Особенности аппаратных платформ
- •2.4. Особенности областей использования
- •Лекция 3. Архитектура операционной системы
- •3. 1. Ядро и вспомогательные модули ос
- •3. 2. Ядро и привилегированный режим
- •3. 3. Многослойная структура ос
- •3. 4. Аппаратная зависимость и переносимость ос
- •3. 5. Переносимость операционной системы
- •3. 6. Микроядерная архитектура
- •3 .6. 1. Концепция
- •3. 6. 2. Преимущества и недостатки микроядерной архитектуры
- •3. 7. Совместимость и множественные прикладные среды
- •3. 7. 1. Двоичная совместимость и совместимость исходных текстов
- •3. 7. 2. Трансляция библиотек
- •3. 7. 3. Способы реализации прикладных программных сред
- •Контрольные вопросы
- •Лекция 4. Основные концепции теории ос
- •4.1. Понятие процесса
- •4.2. Понятие ресурса
- •4.3. Концепция виртуализации
- •Одноочередные дисциплины обслуживания.
- •Многоочередная дисциплина обслуживания. Схема данной дисциплины приведена на рис. 5.
- •Дисциплина обслуживания при наличии приоритетов. Такая дисциплина строится на основе рассмотренной выше многоочередной дисциплины. На рис.6. Приводится ее условная схема.
- •4.5. Система прерываний
- •Лекция 5. Процессы и потоки (нити). Взаимодействие процессов.
- •5.1 Процессы
- •5.1.1 Понятие процесса
- •5.1.2 Модель процесса
- •5.1.3 Создание процесса
- •5.1.4 Завершение процесса
- •5.1.5 Иерархия процессов
- •5.1.6 Состояние процессов
- •5.2 Потоки (нити, облегченный процесс)
- •5.2.1 Понятие потока
- •5.2.2 Модель потока
- •5.2.3 Преимущества использования потоков
- •5.2.4 Реализация потоков в пространстве пользователя, ядра и смешанное
- •5.2.5 Особенности реализации Windows
- •5.3. Взаимодействие между процессами
- •5.3.1. Передача информации от одного процесса другому
- •5.3.2 Состояние состязания
- •5.3.3 Критические области
- •5.3.4 Взаимное исключение с активным ожиданием
- •5.3.5 Примитивы взаимодействия процессов
- •5.3.6 Семафоры
- •6.1 Основные понятия планирования процессов
- •6.3.2 Приоритетное планирование
- •6.3.3 Методы разделения процессов на группы
- •6.4 Планирование в системах реального времени
- •6.4.1 Планирование однородных процессов
- •6.4.2 Общее планирование реального времени
- •7.1 Взаимоблокировка процессов
- •7.2 Моделирование взаимоблокировок
- •7.3 Методы борьбы с взаимоблокировками
- •7.3.1 Пренебрежением проблемой в целом (страусовый алгоритм)
- •7.3.2 Обнаружение и устранение взаимоблокировок
- •7.3.3 Динамическое избежание взаимоблокировок
- •7.3.4 Предотвращение четырех условий, необходимых для взаимоблокировок
- •9.1 Принципы аппаратуры ввода-вывода
- •9.1.1 Устройства ввода-вывода
- •9.1.2 Контроллеры устройств
- •9.1.3 Отображаемый на адресное пространство памяти ввод-вывод
- •9.1.4 Прямой доступ к памяти (dma - Direct Memory Access)
- •9.1.5 Прерывания
- •9.2 Принципы программного обеспечения ввода-вывода
- •9.2.1 Задачи программного обеспечения ввода-вывода
- •9.2.2 Программный ввод-вывод
- •9.2.3 Управляемый прерываниями ввод-вывод
- •9.2.4 Ввод-вывод с использованием dma
- •9.3 Программные уровни и функции ввода-вывода
- •9.3.1 Обработчики прерываний
- •9.3.2 Драйвера устройств
- •9.3.3 Независимое от устройств программное обеспечение ввода-вывода
- •9.4. Программное обеспечение ввода-вывода пространства пользователя
- •9.5. Принципы, заложенные в подсистему управления вводом-выводом в ос unix
- •4.1. Понятие об организации и управлении физической памятью в операционных системах
- •4.2. Методы связного распределения основной памяти
- •4.2.1. Связное распределение памяти для одного пользователя
- •4.2.2. Связное распределение памяти при мультипрограммной обработке
- •4.2.3. Стратегии размещения информации в памяти
- •4.3. Организация виртуальной памяти
- •4.3.1. Основные концепции виртуальной памяти
- •4.3.2. Страничная организация виртуальной памяти
- •4.3.3. Сегментная организация виртуальной памяти
- •4.3.4. Странично-сегментная организация виртуальной памяти
- •4.4. Управление виртуальной памятью
- •4.4.1. Стратегии управления виртуальной памятью
- •4.4.2. Стратегии вталкивания (подкачки)
- •4.4.3. Стратегии размещения
- •4.4.4. Стратегии выталкивания
- •Лекции 10-11. Системы управления данными (файловые системы)
- •10.1 Файлы
- •10.1.1 Именование файлов
- •10.1.2 Структура файла
- •Три типа структур файла.
- •10.1.3 Типы файлов
- •Примеры исполняемого и не исполняемого файла
- •10.1.4 Доступ к файлам
- •10.1.5 Атрибуты файла
- •10.1.6 Операции с файлами
- •10.1.7 Файлы, отображаемые на адресное пространство памяти
- •Пример копирования файла через отображение в памяти.
- •10.2 Каталоги
- •10.2.1 Одноуровневые каталоговые системы
- •10.2.2 Двухуровневые каталоговые системы
- •Двухуровневая каталоговая система
- •10.2.3 Иерархические каталоговые системы
- •Иерархическая каталоговая система
- •10.2.4 Имя пути
- •10.2.5 Операции с каталогами
- •10.3 Структура файловой системы
- •Возможная структура файловой системы
- •10.4 Реализация файлов
- •10.4.1 Непрерывные файлы
- •5 Непрерывных файлов на диске и состояние после удаления двух файлов
- •10.4.2 Связные списки
- •Размещение файла в виде связного списка блоков диска
- •10.4.3 Связные списки при помощи таблиц в памяти
- •Примеры I-узла
- •10.5 Реализация каталогов
- •Варианты реализации каталогов
- •10.5.1 Реализация длинных имен файлов
- •Реализация длинных имен файлов
- •10.5.2 Ускорение поиска файлов
- •1 Использование хэш-таблицы для ускорения поиска файла.
- •2 Использование кэширования результатов поиска файлов для ускорения поиска файла.
- •10.6 Совместно используемые файлы
- •10.6.1 Жесткие ссылки
- •Иллюстрация проблемы, которая может возникнуть
- •10.6.2 Символьные ссылки
- •10.7 Организация дискового пространства
- •10.7.1 Размер блока
- •Скорости чтения/записи и эффективность использования диска, в системе с файла одинакового размера 2 Кбайта.
- •10.7.2 Учет свободных блоков
- •Основные два способа учета свободных блоков
- •10.7.3 Дисковые квоты
- •10.8 Надежность файловой системы
- •10.8.1 Резервное копирование
- •10.8.2 Непротиворечивость файловой системы
- •10.11 Производительность файловой системы
- •10.11.1 Кэширование
- •10.11.2 Опережающее чтение блока
- •10.11.3 Снижение времени перемещения блока головок
- •11.1 Файловой системы cd-дисков
- •11.1.1 Файловая система iso 9660
- •Каталоговая запись стандарта iso 9660.
- •11.1.3 Joliet расширения для Windows
- •11.1.4 Romeo расширения для Windows
- •11.1.5 Hfs расширения для Macintosh
- •11.1.6 Файловая система udf (Universal Disk Format)
- •11.2 Файловая система cp/m
- •11.2 Файловая система ms-dos (fat-12,16,32)
- •Каталоговая запись ms-dos, обратите внимание на пустые 10 байт, они будут задействованы в Windows 98
- •11.2.4 Расширение Windows 98 для fat-32
- •Формат каталогов записи с фрагментом длинного имени файла в Windows 98
- •11.3 Файловая система ntfs
- •Главная файловая таблица mft, каждая запись ссылается на файл или каталог.
- •Три записи mft для сильно фрагментированного файла. В первой записи указывается индексы на дополнительные записи.
- •Запись mft для небольшого каталога
- •11.3.1 Поиск файла по имени
- •11.3.2 Сжатие файлов
- •Пример 48-блочного файла, сжатого до 32 блоков
- •Запись mft для предыдущего файла.
- •11.3.3 Шифрование файлов
- •Шифрование файлов в ntfs
- •11.4 Файловая система unix v7
- •Расположение файловой системы unix
- •Каталоговая запись unix v7 в 16 байт Структура I-узела
- •11.4.1 Поиск файла
- •Этапы поиска файла по абсолютному пути /usr/sbin/mc
- •11.4.2 Блокировка данных файла
- •Блокировки данных файла без монополизации
- •11.4.3 Создание и работа с файлом
- •Связь между таблицей дескрипторов файлов, таблицей открытых файлов и таблицей I-узлов.
- •11.5 Файловая система bsd
- •Каталог bsd с тремя каталоговыми записями для трех файлов и тот же каталог после удаления файла zip, увеличивается длина первой записи.
- •11.6 Файловые системы linux
- •11.6.1 Файловая система ext2
- •Размещение файловой системы ext2 на диске
- •11.6.2 Файловая система ext3
- •11.6.3 Файловая система xfs
- •11.6.4 Файловая система rfs
- •11.6.4 Файловая система jfs
- •11.7 Сравнительная таблица некоторых современных файловых систем
- •Примеры монтирования удаленных файловых систем
- •Структура уровней файловой системы nfs
Одноочередные дисциплины обслуживания.
а) FIFO (First In -- First Out) – дисциплина обслуживания в порядке поступления. Все заявки поступают в конец очереди. Первыми обслуживаются заявки, находящиеся в начале очереди. Схематически эта дисциплина показана на рис. 4а.
б) LIFO (Last In -- First Out) – дисциплина обслуживания в порядке, обратном порядку поступления. Эта дисциплина является основой построения стековой памяти. Схема дисциплины представлена на рис.4б.
Обе рассмотренные дисциплины просты в реализации. Среднее время ожидания заявок в очереди при установившихся темпе обслуживания и поступления одинаково для всех процессов, независимо от того, как надолго процессу требуется распределяемый ресурс.
в) Дисциплина обслуживания по круговому циклическому алгоритму. Схема данной дисциплины показана на рис.4в.
а
)
б)
в
)
Рис.4. Схемы одноочередных дисциплин обслуживания процессов:
а – первый пришел – первый обслужился;
б – последний пришел – первый обслужился;
в – круговой циклический алгоритм
Эта дисциплина используется, в частности, при реализации режима разделения времени. В ее основе лежит дисциплина FIFO. Квант времени обслуживания tk (квант мультиплексирования) ограничивает длительность обслуживания процесса. Если заявка не успевает обслужиться за время tk , то ее обслуживание прерывается, и она поступает в конец очереди. Здесь имеет место «дискриминация» – в наиболее благоприятных условиях оказываются короткие заявки, они имеют меньшие времена ожидания. Степень благоприятствования коротким заявкам тем больше, чем меньше длительность кванта мультиплексирования. Однако уменьшение tk ведет к увеличению накладных расходов, необходимых для обработки прерываний и перераспределения ресурса.
Многоочередная дисциплина обслуживания. Схема данной дисциплины приведена на рис. 5.
Рис.5. Схема многоочередной дисциплины обслуживания
Здесь N очередей, все новые заявки поступают в конец первой очереди. Первая заявка из очереди i (1 < i N) поступает на обслуживание лишь тогда, когда все очереди от 1-й до (i-1)-й пустые. Если за время tk обслуживание процесса завершается полностью, то он покидает систему. В противном случае недообслуженная заявка поступает в конец очереди с номером i+1. После обслуживания заявки из очереди i система выбирает для обслуживания запрос из непустой очереди с самым младшим номером. Если система выходит на обслуживание заявок из очереди N, то они обслуживаются либо по дисциплине FIFO, либо по круговому алгоритму. Данная система наиболее быстро обслуживает все короткие запросы. Недостаток системы заключается в непроизводительных затратах времени на перемещение заявок из одной очереди в другую.
Дисциплина обслуживания при наличии приоритетов. Такая дисциплина строится на основе рассмотренной выше многоочередной дисциплины. На рис.6. Приводится ее условная схема.
Рис.6. Схема приоритетной многоочередной дисциплины обслуживания
Поступающая в систему новая заявка попадает в одну из N очередей в соответствии с имеющимся приоритетом, определяющимся параметрами обслуживаемых процессов. Первыми обслуживаются заявки из очереди с меньшим номером как имеющие более высокий приоритет. Возможны две стратегии поведения системы по отношению к новым заявкам.
а) Обслуживание с абсолютным приоритетом. Если во время обслуживания заявки из очереди i (1 < i N) в систему поступает более приоритетная заявка, например, в очередь i-1, то обслуживание i-го уровня прерывается и система переходит к обслуживанию поступившей заявки. После окончания ее обслуживания происходит дообслуживание прерванной заявки i-го уровня. Здесь еще больше сокращается время ожидания обслуживания для высокоприоритетных заявок за счет ухудшения обслуживания низкоприоритетных. В то же время усложняется логика системы, возникает проблема прерывания, появляются накладные расходы. При достаточной интенсивности прерываний расходы могут стать ощутимыми. Возникает также дополнительная проблема выработки некоторого правила о дообслуживании прерванных процессов – когда выделять им вновь ресурс, учитывать ли, что он уже какое-то время использовался?
б) Обслуживание с относительным приоритетом. Заявка, входящая в систему, не вызывает прерывания обслуживаемой в данный момент заявки, даже если последняя имеет меньший приоритет. Только после окончания обслуживания текущей заявки начнется обслуживание более приоритетной поступившей заявки.
Применение рассмотренных дисциплин обслуживания очередей на практике связано с рядом дополнительных проблем. При распределении сразу нескольких ресурсов для каждого из них должна быть разработана стратегия распределения, согласованная со стратегиями распределения других ресурсов. Дело осложняется также необходимостью анализа возможности возникновения тупиковых ситуаций, проверки полномочий процессов на использование тех или иных ресурсов и т.д.
Следует заметить, что существуют и другие дисциплины обслуживания очередей, особенно в отношении статического и динамического распределения оперативной памяти.