- •1. Эволюция ос
- •2. Классификация ос
- •2.1. Особенности алгоритмов управления ресурсами
- •2.2. Особенности методов построения
- •2.3.Особенности аппаратных платформ
- •2.4. Особенности областей использования
- •Лекция 3. Архитектура операционной системы
- •3. 1. Ядро и вспомогательные модули ос
- •3. 2. Ядро и привилегированный режим
- •3. 3. Многослойная структура ос
- •3. 4. Аппаратная зависимость и переносимость ос
- •3. 5. Переносимость операционной системы
- •3. 6. Микроядерная архитектура
- •3 .6. 1. Концепция
- •3. 6. 2. Преимущества и недостатки микроядерной архитектуры
- •3. 7. Совместимость и множественные прикладные среды
- •3. 7. 1. Двоичная совместимость и совместимость исходных текстов
- •3. 7. 2. Трансляция библиотек
- •3. 7. 3. Способы реализации прикладных программных сред
- •Контрольные вопросы
- •Лекция 4. Основные концепции теории ос
- •4.1. Понятие процесса
- •4.2. Понятие ресурса
- •4.3. Концепция виртуализации
- •Одноочередные дисциплины обслуживания.
- •Многоочередная дисциплина обслуживания. Схема данной дисциплины приведена на рис. 5.
- •Дисциплина обслуживания при наличии приоритетов. Такая дисциплина строится на основе рассмотренной выше многоочередной дисциплины. На рис.6. Приводится ее условная схема.
- •4.5. Система прерываний
- •Лекция 5. Процессы и потоки (нити). Взаимодействие процессов.
- •5.1 Процессы
- •5.1.1 Понятие процесса
- •5.1.2 Модель процесса
- •5.1.3 Создание процесса
- •5.1.4 Завершение процесса
- •5.1.5 Иерархия процессов
- •5.1.6 Состояние процессов
- •5.2 Потоки (нити, облегченный процесс)
- •5.2.1 Понятие потока
- •5.2.2 Модель потока
- •5.2.3 Преимущества использования потоков
- •5.2.4 Реализация потоков в пространстве пользователя, ядра и смешанное
- •5.2.5 Особенности реализации Windows
- •5.3. Взаимодействие между процессами
- •5.3.1. Передача информации от одного процесса другому
- •5.3.2 Состояние состязания
- •5.3.3 Критические области
- •5.3.4 Взаимное исключение с активным ожиданием
- •5.3.5 Примитивы взаимодействия процессов
- •5.3.6 Семафоры
- •6.1 Основные понятия планирования процессов
- •6.3.2 Приоритетное планирование
- •6.3.3 Методы разделения процессов на группы
- •6.4 Планирование в системах реального времени
- •6.4.1 Планирование однородных процессов
- •6.4.2 Общее планирование реального времени
- •7.1 Взаимоблокировка процессов
- •7.2 Моделирование взаимоблокировок
- •7.3 Методы борьбы с взаимоблокировками
- •7.3.1 Пренебрежением проблемой в целом (страусовый алгоритм)
- •7.3.2 Обнаружение и устранение взаимоблокировок
- •7.3.3 Динамическое избежание взаимоблокировок
- •7.3.4 Предотвращение четырех условий, необходимых для взаимоблокировок
- •9.1 Принципы аппаратуры ввода-вывода
- •9.1.1 Устройства ввода-вывода
- •9.1.2 Контроллеры устройств
- •9.1.3 Отображаемый на адресное пространство памяти ввод-вывод
- •9.1.4 Прямой доступ к памяти (dma - Direct Memory Access)
- •9.1.5 Прерывания
- •9.2 Принципы программного обеспечения ввода-вывода
- •9.2.1 Задачи программного обеспечения ввода-вывода
- •9.2.2 Программный ввод-вывод
- •9.2.3 Управляемый прерываниями ввод-вывод
- •9.2.4 Ввод-вывод с использованием dma
- •9.3 Программные уровни и функции ввода-вывода
- •9.3.1 Обработчики прерываний
- •9.3.2 Драйвера устройств
- •9.3.3 Независимое от устройств программное обеспечение ввода-вывода
- •9.4. Программное обеспечение ввода-вывода пространства пользователя
- •9.5. Принципы, заложенные в подсистему управления вводом-выводом в ос unix
- •4.1. Понятие об организации и управлении физической памятью в операционных системах
- •4.2. Методы связного распределения основной памяти
- •4.2.1. Связное распределение памяти для одного пользователя
- •4.2.2. Связное распределение памяти при мультипрограммной обработке
- •4.2.3. Стратегии размещения информации в памяти
- •4.3. Организация виртуальной памяти
- •4.3.1. Основные концепции виртуальной памяти
- •4.3.2. Страничная организация виртуальной памяти
- •4.3.3. Сегментная организация виртуальной памяти
- •4.3.4. Странично-сегментная организация виртуальной памяти
- •4.4. Управление виртуальной памятью
- •4.4.1. Стратегии управления виртуальной памятью
- •4.4.2. Стратегии вталкивания (подкачки)
- •4.4.3. Стратегии размещения
- •4.4.4. Стратегии выталкивания
- •Лекции 10-11. Системы управления данными (файловые системы)
- •10.1 Файлы
- •10.1.1 Именование файлов
- •10.1.2 Структура файла
- •Три типа структур файла.
- •10.1.3 Типы файлов
- •Примеры исполняемого и не исполняемого файла
- •10.1.4 Доступ к файлам
- •10.1.5 Атрибуты файла
- •10.1.6 Операции с файлами
- •10.1.7 Файлы, отображаемые на адресное пространство памяти
- •Пример копирования файла через отображение в памяти.
- •10.2 Каталоги
- •10.2.1 Одноуровневые каталоговые системы
- •10.2.2 Двухуровневые каталоговые системы
- •Двухуровневая каталоговая система
- •10.2.3 Иерархические каталоговые системы
- •Иерархическая каталоговая система
- •10.2.4 Имя пути
- •10.2.5 Операции с каталогами
- •10.3 Структура файловой системы
- •Возможная структура файловой системы
- •10.4 Реализация файлов
- •10.4.1 Непрерывные файлы
- •5 Непрерывных файлов на диске и состояние после удаления двух файлов
- •10.4.2 Связные списки
- •Размещение файла в виде связного списка блоков диска
- •10.4.3 Связные списки при помощи таблиц в памяти
- •Примеры I-узла
- •10.5 Реализация каталогов
- •Варианты реализации каталогов
- •10.5.1 Реализация длинных имен файлов
- •Реализация длинных имен файлов
- •10.5.2 Ускорение поиска файлов
- •1 Использование хэш-таблицы для ускорения поиска файла.
- •2 Использование кэширования результатов поиска файлов для ускорения поиска файла.
- •10.6 Совместно используемые файлы
- •10.6.1 Жесткие ссылки
- •Иллюстрация проблемы, которая может возникнуть
- •10.6.2 Символьные ссылки
- •10.7 Организация дискового пространства
- •10.7.1 Размер блока
- •Скорости чтения/записи и эффективность использования диска, в системе с файла одинакового размера 2 Кбайта.
- •10.7.2 Учет свободных блоков
- •Основные два способа учета свободных блоков
- •10.7.3 Дисковые квоты
- •10.8 Надежность файловой системы
- •10.8.1 Резервное копирование
- •10.8.2 Непротиворечивость файловой системы
- •10.11 Производительность файловой системы
- •10.11.1 Кэширование
- •10.11.2 Опережающее чтение блока
- •10.11.3 Снижение времени перемещения блока головок
- •11.1 Файловой системы cd-дисков
- •11.1.1 Файловая система iso 9660
- •Каталоговая запись стандарта iso 9660.
- •11.1.3 Joliet расширения для Windows
- •11.1.4 Romeo расширения для Windows
- •11.1.5 Hfs расширения для Macintosh
- •11.1.6 Файловая система udf (Universal Disk Format)
- •11.2 Файловая система cp/m
- •11.2 Файловая система ms-dos (fat-12,16,32)
- •Каталоговая запись ms-dos, обратите внимание на пустые 10 байт, они будут задействованы в Windows 98
- •11.2.4 Расширение Windows 98 для fat-32
- •Формат каталогов записи с фрагментом длинного имени файла в Windows 98
- •11.3 Файловая система ntfs
- •Главная файловая таблица mft, каждая запись ссылается на файл или каталог.
- •Три записи mft для сильно фрагментированного файла. В первой записи указывается индексы на дополнительные записи.
- •Запись mft для небольшого каталога
- •11.3.1 Поиск файла по имени
- •11.3.2 Сжатие файлов
- •Пример 48-блочного файла, сжатого до 32 блоков
- •Запись mft для предыдущего файла.
- •11.3.3 Шифрование файлов
- •Шифрование файлов в ntfs
- •11.4 Файловая система unix v7
- •Расположение файловой системы unix
- •Каталоговая запись unix v7 в 16 байт Структура I-узела
- •11.4.1 Поиск файла
- •Этапы поиска файла по абсолютному пути /usr/sbin/mc
- •11.4.2 Блокировка данных файла
- •Блокировки данных файла без монополизации
- •11.4.3 Создание и работа с файлом
- •Связь между таблицей дескрипторов файлов, таблицей открытых файлов и таблицей I-узлов.
- •11.5 Файловая система bsd
- •Каталог bsd с тремя каталоговыми записями для трех файлов и тот же каталог после удаления файла zip, увеличивается длина первой записи.
- •11.6 Файловые системы linux
- •11.6.1 Файловая система ext2
- •Размещение файловой системы ext2 на диске
- •11.6.2 Файловая система ext3
- •11.6.3 Файловая система xfs
- •11.6.4 Файловая система rfs
- •11.6.4 Файловая система jfs
- •11.7 Сравнительная таблица некоторых современных файловых систем
- •Примеры монтирования удаленных файловых систем
- •Структура уровней файловой системы nfs
Главная файловая таблица mft, каждая запись ссылается на файл или каталог.
Первые 16 записей MFT зарезервированы для файлов метаданных. Каждая запись описывает нормальный файл, имена этих файлов начинаются с символа "$".
Каждая запись представляет собой последовательность пар (заголовок атрибута, значение).
Некоторые записи метаданных в MFT:
0) Первая запись описывает сам файл MFT, и содержит все блоки файла MFT. Номер первого блока файла MFT содержится в загрузочном блоке.
1) Дубликат файла MFT, резервная копия.
2) Журнал для восстановления, например, перед созданием, удалением каталога делается запись в журнал. Система не попадет в противоречивое состояние после сбоев.
3) Информация о томе (размер, метка и версия)
4) Определяются атрибуты для MFT записей.
6) Битовый массив использованных блоков - для учета свободного места на диске
7) Указывает на файл начальной загрузки
Атрибуты, используемые в записях MFT:
Стандартная информация - флаговые биты (только чтение, архивный), временные штампы и т.д.
Имя файла - имя файла в кодировке Unicode, файлы могут повторятся в формате MS-DOS 8+3.
Список атрибутов - расположение дополнительных записей MFT
Идентификатор объекта - 64-разрядный идентификатор файла, уникальный для данного тома.
Точка повторного анализа - используется для символьных ссылок и монтирования устройств.
Название тома
Версия тома
Корневой индекс - используется для каталогов
Размещение индекса - используется для очень больших каталогов
Битовый массив - используется для очень больших каталогов
Поток данных утилиты регистрации - используется для шифрования
Данные - поточные данные, может повторяться, используется для хранения самого файла. За заголовком следует список дисковых адресов, определяющий положение файла на диске, если файл очень маленький (несколько сотен байт), то следует сам файл (такой файл называется - непосредственный файл).
Как привило, все данные файла не помещаются в запись MFT.
Дисковые блоки файлам назначаются по возможности в виде серий последовательных блоков (сегментов файлов). В идеале файл должен быть записан в одну серию (не фрагментированный файл), файл, состоящий из n блоков, может быть записан от 1 до n серий.
Запись MFT для 9-блочного файла, состоящего из трех сегментов (серий). Вся запись помещается в одну запись MFT (файл не сильно фрагментирован).
Заголовок содержит количество блоков (9 блоков).
Каждая серия записывается в виде пары, дисковый адрес - количество блоков (20-4, 64-2, 80-3).
Каждая пара, при отсутствие сжатия, это два 64-разрядные числа (16 байт на пару).
Многие адреса содержат большое количество нулей, сжатие делается за счет убирания нулей в старших байтах. В результате для пары требуется чаще всего 4байта.
Если файл сильно фрагментирован, требуется несколько записей MFT.
Три записи mft для сильно фрагментированного файла. В первой записи указывается индексы на дополнительные записи.
Может потребоваться очень много индексов MFT, так что индексы не поместятся в запись. В этом случае список хранится не в MFT, а в файле.
