- •1. Эволюция ос
- •2. Классификация ос
- •2.1. Особенности алгоритмов управления ресурсами
- •2.2. Особенности методов построения
- •2.3.Особенности аппаратных платформ
- •2.4. Особенности областей использования
- •Лекция 3. Архитектура операционной системы
- •3. 1. Ядро и вспомогательные модули ос
- •3. 2. Ядро и привилегированный режим
- •3. 3. Многослойная структура ос
- •3. 4. Аппаратная зависимость и переносимость ос
- •3. 5. Переносимость операционной системы
- •3. 6. Микроядерная архитектура
- •3 .6. 1. Концепция
- •3. 6. 2. Преимущества и недостатки микроядерной архитектуры
- •3. 7. Совместимость и множественные прикладные среды
- •3. 7. 1. Двоичная совместимость и совместимость исходных текстов
- •3. 7. 2. Трансляция библиотек
- •3. 7. 3. Способы реализации прикладных программных сред
- •Контрольные вопросы
- •Лекция 4. Основные концепции теории ос
- •4.1. Понятие процесса
- •4.2. Понятие ресурса
- •4.3. Концепция виртуализации
- •Одноочередные дисциплины обслуживания.
- •Многоочередная дисциплина обслуживания. Схема данной дисциплины приведена на рис. 5.
- •Дисциплина обслуживания при наличии приоритетов. Такая дисциплина строится на основе рассмотренной выше многоочередной дисциплины. На рис.6. Приводится ее условная схема.
- •4.5. Система прерываний
- •Лекция 5. Процессы и потоки (нити). Взаимодействие процессов.
- •5.1 Процессы
- •5.1.1 Понятие процесса
- •5.1.2 Модель процесса
- •5.1.3 Создание процесса
- •5.1.4 Завершение процесса
- •5.1.5 Иерархия процессов
- •5.1.6 Состояние процессов
- •5.2 Потоки (нити, облегченный процесс)
- •5.2.1 Понятие потока
- •5.2.2 Модель потока
- •5.2.3 Преимущества использования потоков
- •5.2.4 Реализация потоков в пространстве пользователя, ядра и смешанное
- •5.2.5 Особенности реализации Windows
- •5.3. Взаимодействие между процессами
- •5.3.1. Передача информации от одного процесса другому
- •5.3.2 Состояние состязания
- •5.3.3 Критические области
- •5.3.4 Взаимное исключение с активным ожиданием
- •5.3.5 Примитивы взаимодействия процессов
- •5.3.6 Семафоры
- •6.1 Основные понятия планирования процессов
- •6.3.2 Приоритетное планирование
- •6.3.3 Методы разделения процессов на группы
- •6.4 Планирование в системах реального времени
- •6.4.1 Планирование однородных процессов
- •6.4.2 Общее планирование реального времени
- •7.1 Взаимоблокировка процессов
- •7.2 Моделирование взаимоблокировок
- •7.3 Методы борьбы с взаимоблокировками
- •7.3.1 Пренебрежением проблемой в целом (страусовый алгоритм)
- •7.3.2 Обнаружение и устранение взаимоблокировок
- •7.3.3 Динамическое избежание взаимоблокировок
- •7.3.4 Предотвращение четырех условий, необходимых для взаимоблокировок
- •9.1 Принципы аппаратуры ввода-вывода
- •9.1.1 Устройства ввода-вывода
- •9.1.2 Контроллеры устройств
- •9.1.3 Отображаемый на адресное пространство памяти ввод-вывод
- •9.1.4 Прямой доступ к памяти (dma - Direct Memory Access)
- •9.1.5 Прерывания
- •9.2 Принципы программного обеспечения ввода-вывода
- •9.2.1 Задачи программного обеспечения ввода-вывода
- •9.2.2 Программный ввод-вывод
- •9.2.3 Управляемый прерываниями ввод-вывод
- •9.2.4 Ввод-вывод с использованием dma
- •9.3 Программные уровни и функции ввода-вывода
- •9.3.1 Обработчики прерываний
- •9.3.2 Драйвера устройств
- •9.3.3 Независимое от устройств программное обеспечение ввода-вывода
- •9.4. Программное обеспечение ввода-вывода пространства пользователя
- •9.5. Принципы, заложенные в подсистему управления вводом-выводом в ос unix
- •4.1. Понятие об организации и управлении физической памятью в операционных системах
- •4.2. Методы связного распределения основной памяти
- •4.2.1. Связное распределение памяти для одного пользователя
- •4.2.2. Связное распределение памяти при мультипрограммной обработке
- •4.2.3. Стратегии размещения информации в памяти
- •4.3. Организация виртуальной памяти
- •4.3.1. Основные концепции виртуальной памяти
- •4.3.2. Страничная организация виртуальной памяти
- •4.3.3. Сегментная организация виртуальной памяти
- •4.3.4. Странично-сегментная организация виртуальной памяти
- •4.4. Управление виртуальной памятью
- •4.4.1. Стратегии управления виртуальной памятью
- •4.4.2. Стратегии вталкивания (подкачки)
- •4.4.3. Стратегии размещения
- •4.4.4. Стратегии выталкивания
- •Лекции 10-11. Системы управления данными (файловые системы)
- •10.1 Файлы
- •10.1.1 Именование файлов
- •10.1.2 Структура файла
- •Три типа структур файла.
- •10.1.3 Типы файлов
- •Примеры исполняемого и не исполняемого файла
- •10.1.4 Доступ к файлам
- •10.1.5 Атрибуты файла
- •10.1.6 Операции с файлами
- •10.1.7 Файлы, отображаемые на адресное пространство памяти
- •Пример копирования файла через отображение в памяти.
- •10.2 Каталоги
- •10.2.1 Одноуровневые каталоговые системы
- •10.2.2 Двухуровневые каталоговые системы
- •Двухуровневая каталоговая система
- •10.2.3 Иерархические каталоговые системы
- •Иерархическая каталоговая система
- •10.2.4 Имя пути
- •10.2.5 Операции с каталогами
- •10.3 Структура файловой системы
- •Возможная структура файловой системы
- •10.4 Реализация файлов
- •10.4.1 Непрерывные файлы
- •5 Непрерывных файлов на диске и состояние после удаления двух файлов
- •10.4.2 Связные списки
- •Размещение файла в виде связного списка блоков диска
- •10.4.3 Связные списки при помощи таблиц в памяти
- •Примеры I-узла
- •10.5 Реализация каталогов
- •Варианты реализации каталогов
- •10.5.1 Реализация длинных имен файлов
- •Реализация длинных имен файлов
- •10.5.2 Ускорение поиска файлов
- •1 Использование хэш-таблицы для ускорения поиска файла.
- •2 Использование кэширования результатов поиска файлов для ускорения поиска файла.
- •10.6 Совместно используемые файлы
- •10.6.1 Жесткие ссылки
- •Иллюстрация проблемы, которая может возникнуть
- •10.6.2 Символьные ссылки
- •10.7 Организация дискового пространства
- •10.7.1 Размер блока
- •Скорости чтения/записи и эффективность использования диска, в системе с файла одинакового размера 2 Кбайта.
- •10.7.2 Учет свободных блоков
- •Основные два способа учета свободных блоков
- •10.7.3 Дисковые квоты
- •10.8 Надежность файловой системы
- •10.8.1 Резервное копирование
- •10.8.2 Непротиворечивость файловой системы
- •10.11 Производительность файловой системы
- •10.11.1 Кэширование
- •10.11.2 Опережающее чтение блока
- •10.11.3 Снижение времени перемещения блока головок
- •11.1 Файловой системы cd-дисков
- •11.1.1 Файловая система iso 9660
- •Каталоговая запись стандарта iso 9660.
- •11.1.3 Joliet расширения для Windows
- •11.1.4 Romeo расширения для Windows
- •11.1.5 Hfs расширения для Macintosh
- •11.1.6 Файловая система udf (Universal Disk Format)
- •11.2 Файловая система cp/m
- •11.2 Файловая система ms-dos (fat-12,16,32)
- •Каталоговая запись ms-dos, обратите внимание на пустые 10 байт, они будут задействованы в Windows 98
- •11.2.4 Расширение Windows 98 для fat-32
- •Формат каталогов записи с фрагментом длинного имени файла в Windows 98
- •11.3 Файловая система ntfs
- •Главная файловая таблица mft, каждая запись ссылается на файл или каталог.
- •Три записи mft для сильно фрагментированного файла. В первой записи указывается индексы на дополнительные записи.
- •Запись mft для небольшого каталога
- •11.3.1 Поиск файла по имени
- •11.3.2 Сжатие файлов
- •Пример 48-блочного файла, сжатого до 32 блоков
- •Запись mft для предыдущего файла.
- •11.3.3 Шифрование файлов
- •Шифрование файлов в ntfs
- •11.4 Файловая система unix v7
- •Расположение файловой системы unix
- •Каталоговая запись unix v7 в 16 байт Структура I-узела
- •11.4.1 Поиск файла
- •Этапы поиска файла по абсолютному пути /usr/sbin/mc
- •11.4.2 Блокировка данных файла
- •Блокировки данных файла без монополизации
- •11.4.3 Создание и работа с файлом
- •Связь между таблицей дескрипторов файлов, таблицей открытых файлов и таблицей I-узлов.
- •11.5 Файловая система bsd
- •Каталог bsd с тремя каталоговыми записями для трех файлов и тот же каталог после удаления файла zip, увеличивается длина первой записи.
- •11.6 Файловые системы linux
- •11.6.1 Файловая система ext2
- •Размещение файловой системы ext2 на диске
- •11.6.2 Файловая система ext3
- •11.6.3 Файловая система xfs
- •11.6.4 Файловая система rfs
- •11.6.4 Файловая система jfs
- •11.7 Сравнительная таблица некоторых современных файловых систем
- •Примеры монтирования удаленных файловых систем
- •Структура уровней файловой системы nfs
4.1. Понятие об организации и управлении физической памятью в операционных системах
Организация и управление основной (первичной, физической, реальной) памятью вычислительной машины - один из важнейших факторов, определяющих построение операционных систем. В англоязычной технической литературе память обозначается синонимами memory и storage.
В операционных системах различают два вида памяти: основная (первичная) и внешняя (вторичная).
Основная память (main storage) - оперативная память центрального процессора или ее часть, представляющее собой единое пространство памяти.
Внешняя память (external storage) - память, данные в которой доступны центральному процессору посредством операций ввода-вывода.
Для непосредственного выполнения программ или обращения к данным необходимо, чтобы они размещались в основной памяти. Внешняя память имеет, как правило, гораздо большую емкость, чем основная, стоит дешевле и позволяет хранить данные и программы, которые должны быть наготове для обработки.
Кроме основной и внешней памяти в современных ЭВМ существует дополнительная быстродействующая память, называемая кэш-памятью.
Все три перечисленных вида памяти образуют иерархию памяти вычислительной машины (см. рис.4.1).
Операционным системам с несколькими уровнями иерархии памяти свойственна высокая интенсивность челночных обменов программами и данными между физическими устройствами памяти различных уровней. Такие обмены отнимают системные ресурсы (например, время центрального процессора), которые можно было бы использовать более продуктивно.
Основная память представляет собой один из самых дорогостоящих ресурсов. Главной задачей при разработке ОС считается оптимальное использование основной памяти на основе рациональной организации и управления ею.
Под организацией памяти понимается то, каким образом представляется и как используется основная память.
В операционных системах применяются следующие виды представления основной памяти:
фиксированными блоками равного размера;
фиксированными разделами неодинакового размера;
динамическими разделами, размеры которых изменяются в ходе работы вычислительной системы.
Использование основной памяти может осуществляться следующими способами:
размещение в памяти единовременно только одной программы пользователей;
размещение в памяти одновременно нескольких программ пользователей;
размещение программ пользователей в конкретном заранее заданном разделе основной памяти;
размещение каждой программы пользователя в одном непрерывном (односвязном) пространстве основной памяти;
размещение программы пользователя в несмежных областях оперативной памяти (при этом ОС осуществляет разбиение размещаемых там программ на отдельные блоки и обеспечивает связь этих блоков между собой).
В операционных системах может применяться любая комбинация перечисленных видов представления и способов использования основной памяти ЭВМ.
Независимо от того, какая схема организации памяти принята для конкретной ОС, необходимо решить, какие стратегии следует применять для достижения оптимальных характеристик.
Стратегии управления памятью определяют, как будет работать память с конкретной схемой организации при различных подходах к решению следующих вопросов:
когда следует поместить новую программу в память;
в какое место основной памяти будет размещаться очередная программа;
как разместить очередную программу в памяти (с минимизацией потерь памяти или с максимизацией скорости размещения);
какую из находящихся в памяти программ следует вывести из памяти, если необходимо обязательно разместить новую программу, а память уже заполнена.
В существующих ОС реализованы стратегии управления, по-разному отвечающие на перечисленные выше вопросы, что в немалой степени обусловлено имеющимися в распоряжении разработчиков аппаратурными и программными средствами.
Стратегии управления памятью делятся на следующие категории:
стратегии выборки;
стратегии размещения;
стратегии замещения.
В свою очередь стратегии выборки разделяют на две подкатегории:
стратегии выборки по запросу (по требованию);
стратегии упреждающей выборки.
Стратегии выборки ставят своей целью определить, когда следует “втолкнуть” очередную программу (или блок программы) или данные в основную память.
Стратегии размещения ставят своей целью определить, в какое место основной памяти следует размещать поступающую программу. Наиболее распространенными являются стратегии размещения, реализующие принципы занятия “первого подходящего”, “наиболее подходящего” и “наименее подходящего” по размерам свободного участка памяти.
Стратегии замещения ставят своей целью определить, какой блок программы или данных следует вывести (“вытолкнуть”) из основной памяти, чтобы освободить место для размещения вновь поступающих программ или данных.
При реализации стратегий размещения операционные системы часто учитывают требования связного распределения памяти для программ и данных.
Связное распределение памяти - такое распределение основной памяти ЭВМ, при котором каждая программа занимает один непрерывный (связный) блок ячеек памяти.
Несвязное распределение памяти - такое распределение основной памяти ЭВМ, при котором программа пользователя разбивается на ряд блоков (сегментов, страниц), которые могут размещаться в основной памяти в участках, не обязательно соседствующих друг с другом (в несмежных участках). В этом случае обеспечивается более эффективное использование пространства основной памяти.
Эффективность той или иной стратегии размещения можно оценить с помощью коэффициента использования памяти h
(4.1)
где Vп - объем памяти, занимаемый программами пользователя; Vоп - полный объем основной памяти; Vос - объем памяти, занимаемый операционной системой; Vо - объем памяти, доступный для распределения.
