
- •Раздел 6.
- •Раздел 6. Модели и алгоритмы решения задач численными методами с использованием математических пакетов Рекомендации по использованию учебного пособия
- •Тема 6.1. Элементы теории погрешностей
- •6.1.1. Точные и приближенные числа
- •6.1.2. Абсолютная и относительная погрешность
- •Тема 6.2. Методы решения нелинейных уравнений
- •6.2.1. Постановка задачи
- •Отделение корней (локализация корней);
- •Итерационное уточнение корней.
- •6.2.2. Отделение корней
- •6.2.2.1. Графическое отделение корней
- •6.2.2.2. Аналитическое отделение корней
- •6.2.3. Уточнение корней
- •6.2.3.1. Метод половинного деления
- •6.2.3.2. Метод итерации
- •6.2.3.3. Метод Ньютона (метод касательных)
- •6.2.3.4. Метод хорд
- •6.2.3.5. Сравнение методов решения нелинейных уравнений
- •6.2.4. Технология решения нелинейных уравнений средствами MathCad
- •Тема 6.3. Интерполяция функций
- •6.3.1. Постановка задачи
- •6.3.2. Интерполяционная формула Лагранжа
- •6.3.3. Интерполяционные формулы Ньютона
- •6.3.3.1. Конечные разности
- •6.3.3.2. Первая интерполяционная формула Ньютона
- •6.3.3.3. Вторая интерполяционная формула Ньютона
- •6.3.4. Сплайн – интерполяция
- •6.3.5. Сравнение интерполяционных многочленов по применению
- •6.3.6. Технология интерполяции функций в среде математических пакетов
- •Тема 6.4. Численное интегрирование
- •6.4.1. Постановка задачи
- •6.4.2. Метод прямоугольников
- •6.4.3. Формула трапеций
- •6.4.4. Формула Симпсона
- •6.4.5. Оценка погрешности численного интегрирования
- •6.4.6. Технология вычисления интегралов в среде математических пакетов
- •Тема 6.5. Методы решения обыкновенных дифференциальных уравнений
- •6.5.1. Постановка задачи
- •6.5.2. Метод Эйлера
- •6.5.3. Методы Рунге-Кутты
- •6.5.4. Решение оду n-го порядка
- •6.5.5. Сравнение методов решения оду
- •6.5.6. Технология решения обыкновенных дифференциальных уравнений средствами математических пакетов
- •6.6.2. Метод дихотомии
- •6.6.3. Метод золотого сечения
- •6.6.4. Сравнение методов
- •6.6.5. Технология решения задач одномерной оптимизации средствами математических пакетов
- •Тема 6.7. Аппроксимация функций
- •6.7.1. Постановка задачи аппроксимации
- •6.7.2. Метод наименьших квадратов
- •6.7.3. Технология решения задач аппроксимации функций средствами математических пакетов
- •Тема 6.8. Многомерная оптимизация
- •6.8.1. Постановка задачи и основные определения
- •6.8.2. Методы спуска
- •6.8.3. Метод градиентного спуска с дроблением шага
- •6.8.4. Метод наискорейшего спуска
- •6.8.5. Проблема оврагов. Метод покоординатного спуска
- •6.8.6. Технология решения задач многомерной оптимизации средствами математических пакетов
- •Список литературы
- •Тема 6.4. Численное интегрирование................................................71
- •Тема 6.5. Методы решения обыкновенных дифференциальных Уравнений............................................................................. 92
- •Тема 6.6. Одномерная оптимизация................................................ 115
- •Тема 6.7. Аппроксимация функций....................................................132
- •Тема 6.8. Методы многомерной оптимизации............................... 149
- •Список литературы.................................................................... 204
6.7.2. Метод наименьших квадратов
Одним из способов определения параметров эмпирической формулы является метод наименьших квадратов. В этом методе параметры a0, a1, ..., an определяются из условия минимума суммы квадратов отклонений аппроксимирующей функции от табличных данных.
Вектор коэффициентов aT определяют из условия минимизации
где (n+1) – количество узловых точек.
Условие минимума функции Е приводит к системе линейных уравнений относительно параметров a0, a1, ..., am. Эта система называется системой нормальных уравнений, её матрица – матрица Грама. Элементами матрицы Грама являются суммы скалярных произведений базисных функций
Для получения искомых значений параметров следует составить и решить систему (m+1) уравнения
Пусть в качестве аппроксимирующей функции выбрана линейная зависимость y= a0+a1x . Тогда
.
Условия минимума:
Тогда первое уравнение имеет вид
Раскрывая скобки и разделив на постоянный коэффициент, получим
.
Первое уравнение принимает следующий окончательный вид:
.
Для получения второго уравнения, приравняем нулю частную производную по а1:
.
.
Система
линейных уравнений для нахождения
коэффициентов многочлена
(линейная аппроксимация):
Введем
следующие обозначения
- средние значения исходных данных. Во
введенных обозначениях решениями
системы являются
.
В
случае применения метода наименьших
квадратов для определения коэффициентов
аппроксимирующего многочлена второй
степени y=a0+a1x+а2х2
критерий минимизации имеет вид
.
Из
условия
получим
следующую систему уравнений:
Решение
этой системы уравнений относительно
а0,
а1,
а2 позволяет
найти коэффициенты эмпирической формулы
-
аппроксимирующего многочлена 2-го
порядка. При решении системы уравнений
могут быть применены численные методы.
В
случае степенного базиса (степень
аппроксимирующего полинома равна m)
матрица Грама системы нормальных
уравнений G и столбец
правых частей системы нормальных
уравнений
имеют
вид
G
=
В матричной форме система нормальных уравнений примет вид:
.
Решение системы нормальных уравнений
найдется
из выражения
В качестве меры уклонения заданных значений функции y0, y1, ..., yn от многочлена степени m - φ(x)=a0 φ0(x)+a1 φ1(x)+...+am φm(x) , принимается величина
(n+1) – количество узлов, m – степень аппроксимирующего многочлена, n+1>=m.
Пример 6.7.2-1. Аппроксимировать следующие данные многочленом второй степени, используя метод наименьших квадратов.
-
x
0.78
1.56
2.34
3.12
3.81
y
2.50
1.20
1.12
2.25
4.28
Запишем в следующую таблицу элементы матрицы Грама и столбец свободных членов:
-
i
x
x2
x3
x4
y
xy
x2y
0
0.78
0.608
0.475
0.370
2.50
1.950
1.520
1
1.56
2.434
3.796
5.922
1.20
1.872
2.920
2
2.34
5.476
12.813
29.982
1.12
2.621
6.133
3
3.12
9.734
30.371
94.759
2.25
7.020
21.902
4
3.81
14.516
55.306
210.72
4.28
16.307
62.129
∑
11.61
32.768
102.76
341.75
11.35
29.770
94.604
Система нормальных уравнений выглядит следующим образом
Решением этой системы являются:
а0 = 5.022; а1 =-4.014; а2=1.002.
Искомая аппроксимирующая функция
Сравним исходные значения y со значениями аппроксимирующего многочлена, вычисленными в тех же точках:
Вычислим среднеквадратическое отклонение (невязку)
.